-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·75 lines (57 loc) · 2.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
from torch.autograd import Function, Variable
def init_weights(m):
if type(m) == nn.Linear:
torch.nn.init.normal_(m.weight)
m.bias.data.fill_(0.01)
def vector_difference(x1, x2):
x1_n = x1 / (torch.norm(x1, p=2, dim=1, keepdim=True)+1e-6)
x2_n = x2 / (torch.norm(x2, p=2, dim=1, keepdim=True)+1e-6)
return x1_n - x2_n
def pcc_ccc_loss(labels_th, scores_th):
std_l_v = torch.std(labels_th[:,0]); std_p_v = torch.std(scores_th[:,0])
std_l_a = torch.std(labels_th[:,1]); std_p_a = torch.std(scores_th[:,1])
mean_l_v = torch.mean(labels_th[:,0]); mean_p_v = torch.mean(scores_th[:,0])
mean_l_a = torch.mean(labels_th[:,1]); mean_p_a = torch.mean(scores_th[:,1])
PCC_v = torch.mean( (labels_th[:,0] - mean_l_v) * (scores_th[:,0] - mean_p_v) ) / (std_l_v * std_p_v)
PCC_a = torch.mean( (labels_th[:,1] - mean_l_a) * (scores_th[:,1] - mean_p_a) ) / (std_l_a * std_p_a)
CCC_v = (2.0 * std_l_v * std_p_v * PCC_v) / ( std_l_v.pow(2) + std_p_v.pow(2) + (mean_l_v-mean_p_v).pow(2) )
CCC_a = (2.0 * std_l_a * std_p_a * PCC_a) / ( std_l_a.pow(2) + std_p_a.pow(2) + (mean_l_a-mean_p_a).pow(2) )
PCC_loss = 1.0 - (PCC_v + PCC_a)/2
CCC_loss = 1.0 - (CCC_v + CCC_a)/2
return PCC_loss, CCC_loss, CCC_v, CCC_a
def pair_mining(inp1, inp2, fixed_sample, is_positive):
sim_matrix = inp1 @ inp2.t()
if fixed_sample: # Ranking-based mining
batch_size = inp2.size(0)
sort_size = int(0.8 * batch_size)
if is_positive:
_, ind = torch.topk(sim_matrix, k=sort_size, dim=0, largest=True)
else:
_, ind = torch.topk(sim_matrix, k=sort_size, dim=0, largest=False)
sort_ind = ind[:,0]
inp1_sort = inp1[sort_ind]
inp2_sort = inp2[sort_ind]
return inp1_sort, inp2_sort
else:
# Pair mining from metric learning.
# Because of absense of categorical label, we slightly tuned original pair mining.
epsilon = 0.0005
if is_positive:
value, _ = torch.max(sim_matrix, dim=0)
ind = sim_matrix < (value-epsilon)
else:
value, _ = torch.min(sim_matrix, dim=0)
ind = sim_matrix > (value+epsilon)
sort_ind = []
for i in range(len(ind[0])):
prob = sum(ind[i]) / len(ind[i])
# Select informative pairs for constructing positive or negative pairs as probability values.
if prob >= 0.7:
sort_ind.append(i)
inp1_sort = inp1[sort_ind]
inp2_sort = inp2[sort_ind]
return inp1_sort, inp2_sort
def penalty_function(inp1, inp2):
return 0.5 * torch.ones_like(inp1[:,0]) * (torch.sign(inp1[:,0]) != torch.sign(inp2[:,0]))