-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
151 lines (124 loc) · 4.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from itertools import count
import os, random, time, torch
from progress.bar import Bar
from game import Game
from model import Model
from player import ModelPlayer, RandomPlayer, GreedyPlayer
from evaluate import evaluate
def self_play(player, games=1, alpha=0.2, epsilon=0.2, display=False):
player.model.eval()
data = []
for n in Bar('Self play').iter(range(games)):
game = Game()
for m in count():
if display: game.display()
value = game.is_over()
if value:
for state in game.get_symmetries():
data += [(state, value), (-state, 1-value)]
break
action, next_value = player.get_action_and_value(game, epsilon)
# update the value of the current state
state = game.get_state()
state = torch.tensor([state]).to(player.device)
value = player.model(state)
value = value + alpha * (next_value - value)
for state in game.get_symmetries():
data += [(state, value), (-state, 1-value)]
game.execute_move(action).flip()
return data
def batches(data, n):
l = len(data)
for i in range(0, l, n):
x, y = zip(*data[i:min(i + n, l)])
yield torch.tensor(x), torch.tensor(y)
def train(model, data, lossfn, optimr, device, epochs=10, batch_size=128):
for epoch in range(epochs):
random.shuffle(data)
# train
model.train()
for x, y in batches(data, batch_size):
optimr.zero_grad()
x, y = x.to(device), y.to(device)
loss = lossfn(model(x), y)
loss.backward()
optimr.step()
del x, y, loss
# evaluate
losses = []
model.eval()
with torch.no_grad():
for x, y in batches(data, batch_size):
x, y = x.to(device), y.to(device)
loss = lossfn(model(x), y)
losses.append(loss.item())
del x, y, loss
print('Epoch %d |' % epoch,
'Loss: %.4e' % (sum(losses)/len(losses)))
def hms(t):
h, m, s = int(t/60/60), int(t/60)%60, t%60
if h: return '%dh%02.dm%02.ds' % (h, m, s)
if m: return '%dm%02.ds' % (m, s)
return '%.1fs' % s
def main(learn_rate, alpha, epsilon, seed=None):
if seed:
torch.manual_seed(seed)
random.seed(seed)
# build model, loss function, optimizer, scheduler
print('\nBuilding model...')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = Model().to(device)
if torch.cuda.device_count() >= 1: model = torch.nn.DataParallel(model)
lossfn = torch.nn.MSELoss()
optimr = torch.optim.Adam(model.parameters(), lr=learn_rate)
print(model, 'on', device, 'using', optimr)
# make players
model_player = ModelPlayer(model, device)
random_player = RandomPlayer()
greedy_player = GreedyPlayer()
# keep track of the best model
best_score = 0, 0, 0
save_dir = 'results'
# data queue
data, data_limit = [], None
for iteration in count():
print('\n ==== ITERATION', iteration + 1, '====')
# save model parameters
if not os.path.isdir(save_dir): os.mkdir(save_dir)
torch.save(model.state_dict(),
os.path.join(save_dir, 'model_' + str(iteration) + '.params'))
if iteration and score > best_score:
torch.save(model.state_dict(), os.path.join(save_dir, 'best.params'))
best_score = score
# get data from self play
print()
start = time.time()
new_data = self_play(model_player, 100, alpha, epsilon)
data = (data + new_data)[-data_limit:] if data_limit else new_data
print('Time taken:', hms(time.time() - start))
print('New data points:', len(new_data))
# train the model
print('\nTraining...')
start = time.time()
train(model, data, lossfn, optimr, device, 10)
print('Time taken:', hms(time.time() - start))
# evaluate against random
print('\nPlaying against random...')
start = time.time()
score = evaluate(model_player, random_player, 100)
print('Time taken:', hms(time.time() - start))
print('%d wins, %d draws, %d losses' % score)
# evaluate against greedy
print('\nPlaying against greedy...')
start = time.time()
score = evaluate(model_player, greedy_player, 100)
print('Time taken:', hms(time.time() - start))
print('%d wins, %d draws, %d losses' % score)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--learn_rate', '-lr', type=float, default=1e-4)
parser.add_argument('--alpha', '-a', type=float, default=0.2)
parser.add_argument('--epsilon', '-e', type=float, default=0.2)
parser.add_argument('--seed', type=int, default=None)
main(**vars(parser.parse_args()))