-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnalysis_DE.R
126 lines (97 loc) · 5.03 KB
/
Analysis_DE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
##### Differential expression analysis
invisible(lapply(c("tidyverse", "DESeq2", "pheatmap", "RColorBrewer"), library, character.only = TRUE))
setwd("/data/Analysis")
##### loading dataset #####
gtf_table <- read_tsv("/data/genome/gencode.vM25.pri.annotation.tsv")
gene_featureCounts <- read_csv("gene_featureCounts_output.csv")
sTable <- read_csv("sTable.csv")
CellTypes <- unique(sTable$CellType)
##### convert gene counts matrix
gene_counts <- as.data.frame(gene_featureCounts[,c(7:ncol(gene_featureCounts))])
row.names(gene_counts) <- gene_featureCounts$Geneid
gene_counts <- gene_counts[,sTable$SampleID]
##### DESeq2 #####
setwd("/data/Analysis")
dir.create(paste0("DE"), showWarnings = FALSE)
setwd(paste0("/data/Analysis/DE"))
cds <- DESeqDataSetFromMatrix(countData = gene_counts, colData = sTable, design=~condition)
cds <- cds[ rowSums(counts(cds)) > 0, ]
cds <- DESeq(cds)
cds.res <- results(cds)
summary(cds.res)
de_result <- left_join(as_tibble(as.data.frame(cds.res) %>% rownames_to_column("gene_id")), gtf_table, by="gene_id")
write.csv(de_result, paste0("DESeq2_result.csv"))
tmp <- as.data.frame(cds.res)
result_table <- data.frame(condition = "mutant vs control",
pval05_up = nrow(tmp %>% filter(pvalue<0.05, log2FoldChange>0)),
pval05_down = nrow(tmp %>% filter(pvalue<0.05, log2FoldChange<0)),
fdr_up = nrow(tmp %>% filter(padj<0.1, log2FoldChange>0)),
fdr_down = nrow(tmp %>% filter(padj<0.1, log2FoldChange<0)))
rm(tmp)
cds.rlog <- rlog(cds, blind=FALSE)
plotPCA(cds.rlog, intgroup=c("condition")) + ggtitle("PCA for condition")
ggsave(paste0("PCA-DESeq2.png"), width=7, height=6, units="in")
##### Heatmap for significant miRNAs (pval < 0.01)
### Both (C vs NC)
res.tmp <- de_result
dds.tmp <- cds
sigList <- res.tmp %>% filter(pvalue < 0.01) %>% arrange(pvalue)
### transformation of counts from DESeq2 object
heatmap.expr <- assay(normTransform(dds.tmp))
selected.expr <- heatmap.expr[sigList$gene_id,]
selected.expr <- selected.expr - rowMeans(selected.expr)
row.names(selected.expr) <- sigList$gene_name
### make heatmap
df <- data.frame(Condition=dds.tmp$condition)
rownames(df) <- make.names(dds.tmp$SampleID, unique=TRUE) #QC$sampleName #
colnames(selected.expr) <- rownames(df)
anno_colors <- list(Condition=c(brewer.pal(5, "Set2")[1],brewer.pal(5, "Set2")[2]))
names(anno_colors[[1]]) <- unique(df$Condition)
while (!is.null(dev.list())) dev.off()
pdf(file=paste0("Heatmap_DEsig_pval0.01.pdf")) #, width=8, height=7)
pheatmap(selected.expr, color = colorRampPalette(rev(brewer.pal(n = 11, name ="RdBu")))(165), # RdYlBu
fontsize_row = 3, fontsize_col = 4, scale = "row", #breaks=seq(-4,4, by=0.05),
cluster_rows=TRUE, show_rownames=TRUE, show_colnames=FALSE, cluster_cols=TRUE,
annotation_col=df, annotation_colors=anno_colors, fontsize=7) #
dev.off()
rm(res.tmp, dds.tmp, heatmap.expr, selected.expr, df, anno_colors)
##### Heatmap for significant miRNAs (FDR < 0.1)
### Both (C vs NC)
res.tmp <- de_result
dds.tmp <- cds
sigList_fdr <- sigList %>% filter(padj < 0.1) %>% arrange(pvalue)
### transformation of counts from DESeq2 object
heatmap.expr <- assay(normTransform(dds.tmp))
selected.expr <- heatmap.expr[sigList_fdr$gene_id,]
selected.expr <- selected.expr - rowMeans(selected.expr)
row.names(selected.expr) <- sigList_fdr$gene_name
### make heatmap
df <- data.frame(Condition=dds.tmp$condition)
rownames(df) <- make.names(dds.tmp$SampleID, unique=TRUE) #QC$sampleName #
colnames(selected.expr) <- rownames(df)
anno_colors <- list(Condition=c(brewer.pal(5, "Set2")[1],brewer.pal(5, "Set2")[2]))
names(anno_colors[[1]]) <- unique(df$Condition)
while (!is.null(dev.list())) dev.off()
pdf(file=paste0("Heatmap_DEsig_fdr0.1.pdf")) #, width=8, height=7)
pheatmap(selected.expr, color = colorRampPalette(rev(brewer.pal(n = 11, name ="RdBu")))(165), # RdYlBu
fontsize_row = 3, scale = "row", #breaks=seq(-4,4, by=0.05),
cluster_rows=TRUE, show_rownames=TRUE, show_colnames=FALSE, cluster_cols=TRUE,
annotation_col=df, annotation_colors=anno_colors, fontsize=7) #
dev.off()
rm(res.tmp, dds.tmp, heatmap.expr, selected.expr, df, anno_colors)
##### Boxplots
dir.create(paste0("boxplots"), showWarnings = FALSE)
num <- 1
for (g in 1:50){
geneCounts <- plotCounts(cds, gene = sigList$gene_id[g], intgroup = c("condition"), returnData = TRUE)
ggplot(geneCounts, aes(x = condition, y = count, color = condition)) +
geom_boxplot(outlier.shape=1) + scale_y_log10() + geom_point(position=position_jitterdodge(dodge.width=0.9)) +
ggtitle(paste0(sigList$gene_name[g]," (",sigList$gene_id[g],")")) + xlab("") + ylab("DESeq2 norm. count - log scaled") +
theme_bw() + theme(axis.text.x = element_text(angle = 35, hjust = 1, size=10))
ggsave(paste0("boxplots/Boxplot_",num,"-",sigList$gene_name[g],".png"), plot = last_plot(), device="png",
scale = 1, width = 5, height = 5, units = "in")
num <- num+1
rm(geneCounts)
}
rm(num)
write_csv(result_table, "DE_summary.csv")