-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLayerNorm.py
98 lines (77 loc) · 3.1 KB
/
LayerNorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.autograd import Function, Variable, gradcheck
from math import sqrt
class layer_norm(Function):
@staticmethod
def forward(ctx, input, gain=None, bias=None):
ctx.save_for_backward(input, gain, bias)
mean = input.mean(-1, keepdim=True)
var = input.var(-1, unbiased=False, keepdim=True)
input_normalized = (input - mean) / torch.sqrt(var + 1e-9)
if gain is not None and bias is not None:
output = input_normalized * gain + bias
elif not (gain is None and bias is None):
raise RuntimeError("gain and bias of LayerNorm should be both None or not None!")
else:
output = input_normalized
return output
@staticmethod
def backward(ctx, grad_output):
input, gain, bias = ctx.saved_variables
mean = input.mean(-1, keepdim=True)
var = input.var(-1, unbiased=False, keepdim=True)
input_normalized = (input - mean) / torch.sqrt(var + 1e-9)
grad_input = grad_gain = grad_bias = None
N = input.size(-1)
input_mu = input - mean
std_inv = 1. / torch.sqrt(var + 1e-9)
if ctx.needs_input_grad[0]:
if gain is not None:
grad_input_normalized = (grad_output * gain)
else:
grad_input_normalized = grad_output
grad_var = (-0.5) * (grad_input_normalized * input_mu).sum(dim=-1, keepdim=True) * (std_inv ** 3)
grad_mean = (-1.0) * (grad_input_normalized * std_inv).sum(dim=-1, keepdim=True) \
- 2.0 * grad_var * input_mu.mean(dim=-1, keepdim=True)
grad_input = grad_input_normalized * std_inv + (2. / N) * grad_var * input_mu + (1. / N) * grad_mean
if gain is not None and ctx.needs_input_grad[1]:
grad_gain = (grad_output * input_normalized).sum(dim=0)
if bias is not None and ctx.needs_input_grad[2]:
grad_bias = grad_output.sum(dim=0)
return grad_input, grad_gain, grad_bias
class LayerNorm(nn.Module):
"""
Layer Normalization layer's implementation which follows paper "https://arxiv.org/abs/1607.06450".
Notes: This implement serves for the (N x C) tensor only where C is the number of features.
"""
def __init__(self, num_features, affine=True):
super(LayerNorm, self).__init__()
self.affine = affine
if self.affine:
self.weight = Parameter(torch.Tensor(num_features))
self.bias = Parameter(torch.Tensor(num_features))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
if self.affine:
self.weight.data.uniform_()
self.bias.data.zero_()
def forward(self, input):
return layer_norm.apply(input, self.weight, self.bias)
def __repr__(self):
return ("{name}(num_features={num_features}, affine={affine})"
.format(name=self.__class__.__name__, **self.__dict__))
if __name__ == "__main__":
torch.manual_seed(123)
input = (Variable(torch.randn(30, 20).double(), requires_grad=True),
Variable(torch.randn(20).double(), requires_grad=True),
Variable(torch.randn(20).double(), requires_grad=True))
test = gradcheck(layer_norm.apply, input)
print("test:", test)