-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinsanely-fast-whisper.py
66 lines (56 loc) · 2.98 KB
/
insanely-fast-whisper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/usr/bin/env python3
import click
import os
import time
@click.command()
@click.option('--model', default='openai/whisper-base', help='ASR model to use for speech recognition. Default is "openai/whisper-base". Model sizes include base, small, medium, large, large-v2. Additionally, try appending ".en" to model names for English-only applications (not available for large).')
@click.option('--device', default='cuda:0', help='Device to use for computation. Default is "cuda:0". If you want to use CPU, specify "cpu".')
@click.option('--dtype', default='float32', help='Data type for computation. Can be either "float32" or "float16". Default is "float32".')
@click.option('--batch-size', type=int, default=8, help='Batch size for processing. This is the number of audio files processed at once. Default is 8.')
@click.option('--better-transformer', is_flag=True, help='Flag to use BetterTransformer for processing. If set, BetterTransformer will be used.')
@click.option('--chunk-length', type=int, default=30, help='Length of audio chunks to process at once, in seconds. Default is 30 seconds.')
@click.argument('audio_file', type=str)
def asr_cli(model, device, dtype, batch_size, better_transformer, chunk_length, audio_file):
from transformers import pipeline
import torch
# Initialize the ASR pipeline
pipe = pipeline("automatic-speech-recognition",
model=model,
device=device,
torch_dtype=torch.float16 if dtype == "float16" else torch.float32)
if better_transformer:
pipe.model = pipe.model.to_bettertransformer()
# Perform ASR
click.echo("Model loaded.")
start_time = time.perf_counter()
outputs = pipe(audio_file, chunk_length_s=chunk_length, batch_size=batch_size, return_timestamps=True)
# Output the results
click.echo(outputs)
click.echo("Transcription complete.")
end_time = time.perf_counter()
elapsed_time = end_time - start_time
click.echo(f"ASR took {elapsed_time:.2f} seconds.")
# Save ASR chunks to an SRT file
audio_file_name = os.path.splitext(os.path.basename(audio_file))[0]
srt_filename = f"{audio_file_name}.srt"
with open(srt_filename, 'w') as srt_file:
for index, chunk in enumerate(outputs['chunks']):
start_time = seconds_to_srt_time_format(chunk['timestamp'][0])
end_time = seconds_to_srt_time_format(chunk['timestamp'][1])
srt_file.write(f"{index + 1}\n")
srt_file.write(f"{start_time} --> {end_time}\n")
srt_file.write(f"{chunk['text'].strip()}\n\n")
def seconds_to_srt_time_format(seconds):
if seconds == None:
seconds = 0
hours = seconds // 3600
seconds %= 3600
minutes = seconds // 60
seconds %= 60
milliseconds = int((seconds - int(seconds)) * 1000)
hours = int(hours)
minutes = int(minutes)
seconds = int(seconds)
return f"{hours:02d}:{minutes:02d}:{int(seconds):02d},{milliseconds:03d}"
if __name__ == '__main__':
asr_cli()