-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathELA.py
168 lines (133 loc) · 4.74 KB
/
ELA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#importing libraries
import tkinter as tk
from tkinter import filedialog as fd
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import (
FigureCanvasTkAgg,
NavigationToolbar2Tk
)
import skimage
from skimage.util import compare_images
from skimage import img_as_ubyte
import numpy as np
import io
import imageio
import os.path
import copy
#creating main program window
root_window = tk.Tk()
root_window.title("ELA")
#variables for the image handles
original_image = None
original_file_name = None
original_image_blurred = None
#variables for altering the image
to_blur_var = tk.IntVar()
compress_quality_var = tk.IntVar()
#main work function
def processImages():
#check if the image is loaded
if original_image is not None:
#creating memory stream for the compressed image
buffer = io.BytesIO()
#compress the image using JPEG in-memory
#use the normal image or the blurred image depending on the checkbox
imageio.imwrite(buffer,
original_image if to_blur_var.get() == 0
else original_image_blurred, format = 'jpg',
quality = compress_quality_var.get())
image_compressed = imageio.imread(buffer.getbuffer(), format='jpg')
#subtrack the original image from the compressed image
image_difference = compare_images(original_image, image_compressed, 'diff')
image_difference = img_as_ubyte(image_difference)
#get the maximum difference value
max_diff = np.amax(image_difference)
#enhance the brightness of the difference image
image_ELA = skimage.exposure.adjust_gamma(image_difference, max_diff / 255.0)
#calculate the inverse of the ELA image
inverted_image_ELA = skimage.util.invert(image_ELA)
#setting the figures
sp1.title.set_text(f'Original image: \n{original_file_name}')
sp1.imshow(original_image)
sp2.title.set_text(f'Blurred image: \n{original_file_name}')
sp2.imshow(original_image_blurred)
sp3.title.set_text(f'ELA on ' +
f'{"original" if to_blur_var.get() == 0 else "blurred"} ' +
f'image: \n{original_file_name}')
sp3.imshow(image_ELA)
sp4.title.set_text(f'ELA on ' +
f'{"original" if to_blur_var.get() == 0 else "blurred"} ' +
f'inverted image: \n{original_file_name}')
sp4.imshow(inverted_image_ELA)
figure.suptitle(f'Compression level used: {str(compress_quality_var.get())} %')
#update the canvas
figure_canvas.draw()
#function for loading the image
def openImage():
file_types = [
('JPG', '*.jpg')
]
file_path = fd.askopenfilename(
title = 'Open Image',
filetypes = file_types
)
if file_path:
#load the image and its' info in global variables
global original_image
global original_file_name
global original_image_blurred
image = skimage.io.imread(file_path)
original_image = copy.deepcopy(image)
_, file_name = os.path.split(file_path)
original_file_name = file_name
#process the image with gaussian blur
image_blurred = skimage.filters.gaussian(image,
sigma=2,
multichannel = True)
original_image_blurred = copy.deepcopy(image_blurred)
#once the images are loaded, process them
processImages()
#setting up the interface
open_image_button = tk.Button(
root_window,
text = "Open Image",
command = openImage
)
use_blurred_image_checkbox = tk.Checkbutton(
root_window,
text = "Use blurred image",
command = lambda : processImages(),
var = to_blur_var
)
compression_label = tk.Label(
root_window,
text = "Compression level: "
)
compression_slider = tk.Scale(
root_window,
from_ = 0,
to = 100,
length = 300,
tickinterval = 10,
orient = tk.HORIZONTAL,
var = compress_quality_var
)
#default compression level
compression_slider.set(90)
compression_slider.bind("<ButtonRelease-1>", lambda event: processImages())
#binding matplotlib figure to the canvas
figure = plt.figure()
figure_canvas = FigureCanvasTkAgg(figure, master = root_window)
NavigationToolbar2Tk(figure_canvas, root_window)
sp1 = figure.add_subplot(221)
sp2 = figure.add_subplot(222)
sp3 = figure.add_subplot(223)
sp4 = figure.add_subplot(224)
#pack the interface
open_image_button.pack()
use_blurred_image_checkbox.pack()
compression_label.pack()
compression_slider.pack()
figure_canvas.get_tk_widget().pack(side = tk.TOP, fill = tk.BOTH, expand = 1)
#start the main loop
root_window.mainloop()