-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
37 lines (30 loc) · 1.17 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from flask import Flask, render_template, request
import pandas as pd
import pickle
import numpy as np
app = Flask(__name__)
data = pd.read_csv("dataset/cleaned_house_data.csv")
pipe = pickle.load(open("model/RidgeModel.pkl", 'rb'))
@app.route('/')
def index():
try:
locations = sorted(data['location'].unique())
return render_template('index.html', locations=locations)
except Exception as e:
return f"An error occurred: {str(e)}", 500
@app.route('/predict', methods=['POST'])
def predict():
try:
location = request.form.get('location')
bhk = int(request.form.get('bhk'))
bath = float(request.form.get('bath'))
sqft = float(request.form.get('total_sqft'))
# Create a DataFrame with the input data
input_data = pd.DataFrame([[location, sqft, bath, bhk]], columns=['location', 'total_sqft', 'bath', 'BHK'])
# Make prediction
prediction = pipe.predict(input_data)[0] * 1e5
return str(np.round(prediction, 2))
except Exception as e:
return f"An error occurred: {str(e)}", 500
if __name__ == '__main__':
app.run(host="0.0.0.0", port=5000)