-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1998 S5 - Mountain Passage.cpp
119 lines (92 loc) · 3.61 KB
/
1998 S5 - Mountain Passage.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
1998 S5 - Mountain Passage
Difficulty: Medium
Basically, the question requires you to find the path to the end that requires the minimum amount of oxygen
When moving between any two points, if either have an altitude greater than the initial, you require 1 oxygen
Therefore, we will make note that we can essentially construct a weighted graph given the input
From there, we can perform Dijkstra's shortest path algorithm to determine the minimum oxygen required to reach the end
Not really much else to say, pretty straightforward problem
*/
#include <iostream>
#include <queue>
#include <utility>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include <string.h>
//compare for dijkstra's priority queue
struct compare{
bool operator ()(int& a, int& b){
return a > b;
}
};
//Going up down left right
int row[] = {-1, 1, 0, 0};
int col[] = {0, 0, -1, 1};
int main(){
int tests;
std::cin >> tests;
while (tests--){
int n;
std::cin >> n;
//Set up the grid, notice that I pad the left and right of the mountain to avoid overflow when checking left right up down
std::vector<std::vector<int>> mountain (n + 2, std::vector<int> (n + 2, 999999999));
for (int i = 1; i <= n; i++){
for (int j = 1; j <= n; j++){
std::cin >> mountain[i][j];
}
}
//Time to actually construct the graph from the given input
int initialAltitude = mountain[1][1];
//I'm converting the 2-D graph into a 1-D graph by imagining the 2-D array as a really long number line
std::vector<std::vector<std::vector<int>>> graph (n * n + 1);
std::vector<int> oxygenUsed (n * n + 1, 999999999); //Dijkstra's distance array
//For each row
for (int r = 1; r <= n; r++){
//For each column
for (int c = 1; c <= n; c++){
//Check up left right down
for (int i = 0; i < 4; i++){
//An edge only exists if the absolute difference between the 2 altitudes is < 3
if (abs(mountain[r + row[i]][c + col[i]] - mountain[r][c]) < 3){
//If either is greater than initial altitude, the edge requires oxygen
if (mountain[r + row[i]][c + col[i]] > initialAltitude || mountain[r][c] > initialAltitude){
graph[n * (r - 1) + c].push_back({1, n * (r + row[i] - 1) + c + col[i]});
}
//Otherwise, no oxygen
else{
graph[n * (r - 1) + c].push_back({0, n * (r + row[i] - 1) + c + col[i]});
}
}
}
}
}
//Dijkstra's begin
oxygenUsed[1] = 0;
std::priority_queue<int, std::vector<int>, compare> q;
q.push(1);
while(!q.empty()){
int cur = q.top();
q.pop();
for (auto edge: graph[cur]){
if (oxygenUsed[edge[1]] > oxygenUsed[cur] + edge[0]){
q.push(edge[1]);
oxygenUsed[edge[1]] = oxygenUsed[cur] + edge[0];
}
}
}
//If not reachable
if (oxygenUsed[n * n] == 999999999){
std::cout << "CANNOT MAKE THE TRIP\n";
}
//Reachable
else{
std::cout << oxygenUsed[n * n] << '\n';
}
//This is just for correct output format
if (tests != 0){
std::cout << '\n';
}
}
return 0;
}