-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2001 S4 - Cookies.cpp
121 lines (84 loc) · 4.83 KB
/
2001 S4 - Cookies.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/*
2001 S4 - Cookies
Difficulty: Medium
This problem is another annoying gemoetry problem
It's not actually that hard, but i forgot to square root my answer which caused me to waste 2+ hours on this problem
Basic idea:
For every triplet of points:
If the the points form a right angled triangle or acute angled triangle, we will find the circumradius of that triangle
via perpendicular bisectors. We will use the formula of abc / 4 * area of ABC to find the circumradius
I reccomend the following video to help you understand how this formula works
https://www.khanacademy.org/math/geometry-home/triangle-properties/perpendicular-bisectors/v/area-circumradius-formula-proof
Otherwise, if the triangle formed is obtuse, the diameter of the circle must be the longest length of that triangle
*/
#include <iostream>
#include <vector>
#include <math.h>
#include <iomanip>
#include <algorithm>
int main(){
int n; std::cin >> n;
//Store coordinates
std::vector<double> x (n);
std::vector<double> y (n);
for (int i = 0; i < n; i++){
std::cin >> x[i] >> y[i];
}
double circumradius = 0; //Circumardius, technically this is actually storing the diameter, but we ignore that part
//For each triplet of points
for (int i = 0; i < n; i++){
for (int j = i + 1; j < n; j++){
for (int k = j + 1; k < n; k++){
//The formula for circumradius is abc/4*area of triangle ABC where a, b and c are the side lengths of triangle ABC
//Calculate side lengths of each side
double IJ, JK, KI;
IJ = std::sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
JK = std::sqrt((x[k] - x[j]) * (x[k] - x[j]) + (y[k] - y[j]) * (y[k] - y[j]));
KI = std::sqrt((x[i] - x[k]) * (x[i] - x[k]) + (y[i] - y[k]) * (y[i] - y[k]));
//If the triangle formed by the three points is obtuse, then the diameter of the circle is actually the length of the longest side
std::vector<double> sides;
sides.push_back(IJ); sides.push_back(JK); sides.push_back(KI);
std::sort(sides.begin(), sides.end());
//We know if its obtuse by pythagorean theorem if a^2 + b^2 < c^2, then it must be obtuse
if (sides[0] * sides[0] + sides[1] * sides[1] < sides[2] * sides[2]){
if (sides[2] > circumradius) circumradius = sides[2]; //Only change if it's greater than
}
//Otherwise, the triangle must be acute or right angle
else{
//Determine the height of the triangle so that we can find area,
//To do this, we will first find slope of IJ, then we will find perpendicular slope
//With this perpendicular slope, we make sure it passes through point K and then we determine its point of intersection with IJ
//Afterward, we calculate distance between point of intersection and point K
double slope, perpslope, height;
//Diagonal line, aka normal slope
if (x[i] - x[j] != 0 && y[i] - y[j] != 0){
slope = (y[i] - y[j]) / (x[i] - x[j]); //Slope of IJ
double b1 = y[i] - slope * x[i]; //y=mx+b, b value for line IJ
perpslope = -1/slope; //perpendicular line just has negative reciprocal for slope
double b2 = y[k] - perpslope * x[k]; //Solve for b with the perpendicular line such that it passes through K
double POIx = (b1 - b2) / (perpslope - slope); //Get their point of intersection, I will leave this as an exercise for you, hint just rearrange a linear system
double POIy = slope * POIx + b1;
height = std::sqrt((POIx - x[k]) * (POIx - x[k]) + (POIy - y[k]) * (POIy - y[k]));
}
//Vertical line case, if IJ is vertical
if (x[i] - x[j] == 0){
height = std::abs(x[i] - x[k]);
}
//Horizontal line, if IJ is horizontal
if (y[i] - y[j] == 0){
height = std::abs(y[i] - y[k]);
}
//Use our information to find circumradius by plugging into the formula
double area = IJ * height / 2; //Area of triangle
double abc = IJ * JK * KI; //The side lengths multiplied
if ((abc / (4 * area)) * 2 > circumradius){
circumradius = (abc / (4 * area)) * 2;
}
}
}
}
}
//Output to two decimal places
std::cout << std::fixed << std::setprecision(2) << circumradius << '\n';
return 0;
}