-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrecommendation_system.py
78 lines (64 loc) · 2.72 KB
/
recommendation_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import functools
import calculate
import librosa
import os
import sqlite3
def _cmp(x, y): # [ID, diff, [low_pass, high_pass]]
if not x[2][0] and y[2][0]:
return 1
elif x[2][0] and not y[2][0]:
return -1
if not x[2][1] and y[2][1]:
return 1
elif x[2][1] and not y[2][1]:
return -1
if x[1] < y[1]:
return -1
elif x[1] > y[1]:
return 1
return 0
def recommendation(user_pitch: list, db: str = "./MusicDay.db") -> list:
"""
This function provides the full recommendation songs using user's pitch.
Parameters
----------
user_pitch: list
The list containing the five reference pitches of the tester [low, avg. low, avg., avg high, high]
db: str
The location of the SQLite database.
Returns
-------
out: list
The list contains all recommendations in order.
The first dictionary is the most recommend song.
The structure of dictionary is {Name: str, Artist: str, Album: str, Cover: str, URL: str, Pitch: list}.
The Cover shows the path of the cover image.
The URL shows the original download source.
The Pitch shows the list of the five reference pitches of the song [low, avg. low, avg., avg high, high].
The Judge Result shows if the tester can handle the song. The list contains two booleans [low pass, high pass].
Raises
------
FileNotFoundError
If the given path of the database is not exist.
"""
if not os.path.isfile(db):
raise FileNotFoundError(f"Error, the database path {db} is not exist. Abort.")
# Opens a connection to the SQLite database file database
conn = sqlite3.connect(db)
cursor = conn.cursor()
multilist = [] # [ID, diff, judge result]
# Search for whole dataset
for i in range(1000):
cursor.execute(f"select * from music where ID={i}")
data_from_music = cursor.fetchone()
song_pitch = [data_from_music[x] for x in range(7, 12)]
judge_result = calculate.judge(user_pitch[0], user_pitch[4], data_from_music[7], data_from_music[11]) # Return boolean of list.
multilist.append([data_from_music[0], calculate.distance(user_pitch, song_pitch), judge_result])
multilist = sorted(multilist, key=functools.cmp_to_key(_cmp))
return_list = []
for i in range(len(multilist)):
cursor.execute(f"select * from music where ID={multilist[i][0]}")
data = cursor.fetchone()
return_list.append(dict([('Name', data[1]), ('Artist', data[2]), ('Album', data[3]), ('Cover', data[5]), ('URL', data[6]), ('Pitch', [librosa.midi_to_note(data[x]) for x in range(7, 12)]), ('Judge Result', multilist[i][2])]))
conn.close() # close the file
return return_list