-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path10.Cubic_Spline_LU_Profiled.c
325 lines (264 loc) · 9.27 KB
/
10.Cubic_Spline_LU_Profiled.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/***********************************
Purpose : Interpolation Error
Authors : Kirtan Patel(AE19B038)
Date : 29/09/2020
Input : File Path, Downsampling Constant
Output : The Squared Error between actual and interpolated data values ,for the Input Downsampling Constant
*************************************/
/***
argc : saves the number of arguements input by the user in the command line
argv : saves the arguements input by the user in the command line
fptr : pointer to access the Data file
size : stores the size of the array required to store the data from the file
x_true[],y_true[] : stores the original data accessed in the file
y_interpolated[] : stores the interpolated data
index : stores the index value of data being accessed
skip_line : counter to check if the line is to be skipped or not
line_count : stores the row number of the data being accessed
ch : stores the character being accessed
extra : reference to an already allocated object of type char*,
whose value is set by the function to the next character in str after the numerical value.
current_number[] : stores the number being accessed in the file
DownSampled_Point_count : stores the number of points after Downsampling
Ds_c : (Downsampling Constant) stores the value of the Downsampling Constant accepted from user
x_ds[],y_ds[]:stores Downsampled points
cntr: counter used to initialize downsampled points
n : stores number of downsampled points-1
h[],b[],v[],u[],k[]: Arrays used in calculation of LU Decomposition
mat[][]: Stores the Matrix to be decomposed
ro
e_squared : stores the value of squared error
i,j,row,column: loop variables
ctr1,ctr2,m : control variables used for LU decomposition
Y[] : Used to store (U*K) in the L*U*K=u
Q[] : temporary array used to store values of k[]
mul[] : array used in LU Decomposition
uppertriangle[][] : stores the upper triangular matrix
lowertriangle[][] : stores the lower triangular matrix
***/
//Logic to find piece-wise cubic spline inspired from the following page:
//https://towardsdatascience.com/numerical-interpolation-natural-cubic-spline-52c1157b98ac
/***** Usage : Compile using 'gcc Cubic_Interpolation_LU.c -lm -o CLU ' ********/
/***** Usage : enter "./epsilon ~filepath~ ~Downsampling Constant~" *****/
/**
Since an array cannot be alloted an infinite amount of space,Downsampling constants less than :
1.61 , when array data type used is float (less precise)
2.86 , when array data type used is double (more precise)
give the Error "Segmentation Fault (Core dumped)" since the size of mat[][] exceeds limit
Hence I've plotted:
1. Original vs Interpolated Graph
2. Epsilon vs G for G>61 (Taking float)
**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
//https://towardsdatascience.com/numerical-interpolation-natural-cubic-spline-52c1157b98ac
int size;
float* x_true;
float* y_true;
float* x_ds;
float* y_ds;
float* y_int;
int Ds_c;
float xi;
int DownSampled_Point_count;
float Downsample()
{ //CODE TO DOWNSAMPLE THE DATA
if(Ds_c>=size) //checking if the Downsampling is possible
{ printf("Cannot Downsample so much\n"); //printing error message
exit(1);
}
y_int = (float*) calloc(size,sizeof(float));
for(int i=0;i<size;i++)
{
if(i%(Ds_c)==0) //initializing downsampled points to original value
{
y_int[i]=y_true[i];
DownSampled_Point_count++;
}
if(i%(Ds_c)!=0) //initializing non-downsampled points to zero
y_int[i]=0.0;
}
if((size-1)%Ds_c!=0) //if last point is not included, explicitly include it in the downsampled dataset
{ y_int[(size-1)]=y_true[(size-1)];
DownSampled_Point_count++;
}
//Storing Downsampled points for interpolation
x_ds = (float*) calloc(DownSampled_Point_count,sizeof(float));
y_ds = (float*) calloc(DownSampled_Point_count,sizeof(float));
int cntr=0; //counter to store downsampled points
for(int i=0;i<size;i++)
{ if(i%(Ds_c)==0) //initializing downsampled points to original value
{
x_ds[cntr]=x_true[i];
y_ds[cntr]=y_true[i];
cntr++;
}
}
if((size-1)%Ds_c!=0) //if last point is not included, explicitly include it in the downsampled dataset
{
x_ds[cntr]=x_true[size-1];
y_ds[cntr]=y_true[size-1];
cntr++;
}
}
float Interpolate()
{
int n;
n = DownSampled_Point_count-1;
float h[n],b[n],v[n+1],u[n-2],k[n];//u[] is the RHS Matrix , k is the knot
int i,j;
//defining variables that we will be using
for(i = 0; i < n; i++)
h[i] = x_ds[i] - x_ds[i+1];
for(i = 0; i < n; i++)
b[i] = (y_ds[i] - y_ds[i+1])/h[i];
for(i = 1; i < n-1; i++)
v[i] = 2*(h[i-1]+h[i]);
for(i = 0; i < n-2; i++)
u[i] = 6*(b[i] - b[i+1]);
k[0] = k[n-1] = 0;
//Making the LHS, Matrix to be Decomposed
float mat[n-2][n-2];
for(int row=0;row<n-2;row++)
{
for(int column=0;column<n-2;column++)
mat[row][column]=0.0;
}
for(i = 0; i < n-2; i++)
mat[i][i] = v[i+1];
for(i = 0; i < n-3; i++)
{ mat[i][i+1] = h[i+1];
mat[i+1][i] = h[i+1];
}
int row,column,ctr1,ctr2;
float lowertriangle[n-2][n-2];//matrices for lower and uppper triangle
float uppertriangle[n-2][n-2];
for(row=0;row<n-2;row++)
{ for(column=0;column<n-2;column++)
{
if(row>column)//initialise all elements of lower triangle in upper triangular matrix as 0
uppertriangle[row][column]=0.0;
if(row<column)//initialise all elements of upper triangle in lower triangular matix as 0
lowertriangle[row][column]=0.0;
if(row==column)//initialise all diagonal elements of lower triangular matrix as 1
lowertriangle[row][column]=1.0;
}
}
ctr2 = 0;
int m = 1;
while(ctr2 < n-2)//loop for LU decomposition of the matrix
{
for(ctr1 = m; ctr1<n-2;ctr1++)
{
float mul[n-2];
mul[ctr1] = mat[ctr1][ctr2]/mat[ctr2][ctr2];
lowertriangle[ctr1][ctr2] = mul[ctr1];
row = ctr1;
for(column = ctr2;column<n-2;column++)
mat[row][column] = mat[row][column] - mul[ctr1]*mat[ctr2][column];
}
m++;
ctr2++;
}
for(row=0;row<n-2;row++)
{
for(column=0;column<n-2;column++)
uppertriangle[row][column] = mat[row][column];
}
float Y[n-2];
for(int i=0;i<n-2;i++)
Y[i]=0.0;
Y[0]=u[0]/lowertriangle[0][0];
for(i=1; i<n-2; i++)
{ Y[i]=u[i];
for(int j=0;j<i;j++)
Y[i]=(Y[i]-(lowertriangle[i][j]*Y[j]));
Y[i]=(Y[i]/lowertriangle[i][i]);
}
float Q[n-2]; //temporary matrix to avoid index confusion in k
Q[n-3]=Y[n-3]/uppertriangle[n-3][n-3];
for(i=n-3; i>=0; i--)
{
Q[i]= Y[i];
for(j=i+1; j<=n-3; j++)
Q[i]=Q[i]-uppertriangle[i][j]*Q[j];
Q[i] = Q[i]/uppertriangle[i][i];
}
for(int i=0;i<=n-3;i++)
k[i+1]=Q[i];
for(j=0;j<size;j++)
{
for(i =0; i < n;i++)
{
if((x_ds[i] < x_true[j])&&(x_true[j] < x_ds[i+1]))
{
y_int[j] = (k[i]/6)*(((pow((x_true[j]-x_ds[i+1]),3))/(h[i])) - ((x_true[j]-x_ds[i+1])*h[i])) - (k[i+1]/6)*(((pow((x_true[j]-x_ds[i]),3))/(h[i])) - ((x_true[j]-x_ds[i])*h[i])) + (((y_ds[i]*(x_true[j]-x_ds[i+1]))-y_ds[i+1]*(x_true[j]-x_ds[i]))/h[i]);
}
}
}
return 0.0;
}
int Error()
{
//CODE TO FIND EPSILON SQUARED
float e_squared=0.0;
for(int i=0;i<size;i++)
e_squared = e_squared + (y_true[i]-y_int[i])*(y_true[i]-y_int[i]);
//Downsampling by Ds_c , the error is e_squared
printf("%d %le \n",Ds_c,e_squared);
}
int main(int agrc, char* argv[])
{
FILE* fptr;
fptr=fopen(argv[1],"r"); //opening file
if(fptr==NULL) //checking if file exist or filepath is correct
{
printf("FILE NOT VALID"); //printing error message
exit(1);
}
size = 1;
x_true = (float*) calloc(size,sizeof(float));
y_true = (float*) calloc(size,sizeof(float));
int skip_line=0,index=0,line_count=0; //initializing variables
char ch,*extra;
char current_number[100];
DownSampled_Point_count=0;
while((ch=fgetc(fptr))!=EOF) //accessing the file character by character
{
if(ch=='#') //checking if row starts with #
skip_line=1; //skip line if it starts with #
if(skip_line==0)
{
if(isalpha(ch)||isdigit(ch)||ch=='-'||ch=='.') //checking if char is a part of the field
strncat(current_number,&ch,1); //if yes adding it to current number
else
{ float new_digits = strtod(current_number,&extra); //if field data ends, converting it to float
if(index==0)
x_true[line_count]=new_digits; //adding number to Array of x_true
if(index==1)
y_true[line_count]=new_digits; //adding square of number to sum of squares of corresponding column
index++; // switching to next column
current_number[0]='\0'; //Resetting the number to be added to zero
}
}
if(ch=='\n') //checking for next line
{ size++;
line_count++; //counter to count the lines
skip_line=0; //reseting the counter to check if line starts with #
index=0; //reseting index to zero
x_true=realloc(x_true,(size)*sizeof(float));
y_true=realloc(y_true,(size)*sizeof(float));
}
}
size=size-1; //correcting the size after it is incremented one extra time in the last
x_true=realloc(x_true,(size)*sizeof(float)); //optimizing space by discarding excess memory
y_true=realloc(y_true,(size)*sizeof(float));
Ds_c = atoi(argv[2]); //Take Dsc=DownSampling_Constant from the user
Downsample();
Interpolate();
Error();
return 0;
}