-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualization.py
92 lines (74 loc) · 2.86 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from scipy import ndimage
import os
def visualize_counting_process(image_path, mask_path):
"""
Visualize how the automatic neuron counting works:
1. Original image
2. Binary mask
3. Labeled components
4. Original image with counted neurons marked
"""
# Load images
image = np.array(Image.open(image_path).convert('RGB'))
mask = np.array(Image.open(mask_path).convert('L'))
# Create binary mask
binary_mask = mask > 127
# Label connected components
labeled_mask, num_neurons = ndimage.label(binary_mask)
# Create colored labels for visualization
colored_labels = np.zeros_like(image)
for i in range(1, num_neurons + 1):
# Generate random color for each neuron
color = np.random.randint(50, 255, 3)
colored_labels[labeled_mask == i] = color
# Create overlay
overlay = image.copy()
mask_overlay = colored_labels.astype(bool).any(axis=2)
overlay[mask_overlay] = overlay[mask_overlay] * 0.3 + colored_labels[mask_overlay] * 0.7
# Visualization
fig, axes = plt.subplots(2, 2, figsize=(15, 15))
# Original image
axes[0, 0].imshow(image)
axes[0, 0].set_title('Original Image')
axes[0, 0].axis('off')
# Binary mask
axes[0, 1].imshow(binary_mask, cmap='gray')
axes[0, 1].set_title('Binary Mask (Ground Truth)')
axes[0, 1].axis('off')
# Labeled components
labeled_display = axes[1, 0].imshow(labeled_mask, cmap='nipy_spectral')
axes[1, 0].set_title(f'Labeled Components\n(Count: {num_neurons} neurons)')
axes[1, 0].axis('off')
plt.colorbar(labeled_display, ax=axes[1, 0])
# Overlay
axes[1, 1].imshow(overlay)
axes[1, 1].set_title('Original Image with Counted Neurons')
axes[1, 1].axis('off')
plt.tight_layout()
plt.savefig('neuron_counting_visualization.png')
plt.close()
def visualize_random_samples(image_dir, mask_dir, num_samples=3):
"""
Visualize multiple random samples from the dataset
"""
# Get list of images
images = sorted(os.listdir(image_dir))
# Select random samples
sample_indices = np.random.choice(len(images), num_samples, replace=False)
for idx in sample_indices:
image_path = os.path.join(image_dir, images[idx])
mask_path = os.path.join(mask_dir, images[idx])
print(f"\nProcessing sample {idx + 1}:")
visualize_counting_process(image_path, mask_path)
def main():
# Set paths to your dataset
image_dir = './dataset/all_images/images/'
mask_dir = './dataset/all_masks/masks/'
print("Creating visualizations for random samples...")
visualize_random_samples(image_dir, mask_dir)
print("\nVisualizations saved as 'neuron_counting_visualization.png'")
if __name__ == '__main__':
main()