-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathtrain.py
430 lines (315 loc) · 12.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
"""
Simple U-Net implementation in TensorFlow
Objective: detect vehicles
y = f(X)
X: image (640, 960, 3)
y: mask (640, 960, 1)
- binary image
- background is masked 0
- vehicle is masked 255
Loss function: maximize IOU
(intersection of prediction & grount truth)
-------------------------------
(union of prediction & ground truth)
Notes:
In the paper, the pixel-wise softmax was used.
But, I used the IOU because the datasets I used are
not labeled for segmentations
Original Paper:
https://arxiv.org/abs/1505.04597
"""
import time
import os
import pandas as pd
import tensorflow as tf
def image_augmentation(image, mask):
"""Returns (maybe) augmented images
(1) Random flip (left <--> right)
(2) Random flip (up <--> down)
(3) Random brightness
(4) Random hue
Args:
image (3-D Tensor): Image tensor of (H, W, C)
mask (3-D Tensor): Mask image tensor of (H, W, 1)
Returns:
image: Maybe augmented image (same shape as input `image`)
mask: Maybe augmented mask (same shape as input `mask`)
"""
concat_image = tf.concat([image, mask], axis=-1)
maybe_flipped = tf.image.random_flip_left_right(concat_image)
maybe_flipped = tf.image.random_flip_up_down(concat_image)
image = maybe_flipped[:, :, :-1]
mask = maybe_flipped[:, :, -1:]
image = tf.image.random_brightness(image, 0.7)
image = tf.image.random_hue(image, 0.3)
return image, mask
def get_image_mask(queue, augmentation=True):
"""Returns `image` and `mask`
Input pipeline:
Queue -> CSV -> FileRead -> Decode JPEG
(1) Queue contains a CSV filename
(2) Text Reader opens the CSV
CSV file contains two columns
["path/to/image.jpg", "path/to/mask.jpg"]
(3) File Reader opens both files
(4) Decode JPEG to tensors
Notes:
height, width = 640, 960
Returns
image (3-D Tensor): (640, 960, 3)
mask (3-D Tensor): (640, 960, 1)
"""
text_reader = tf.TextLineReader(skip_header_lines=1)
_, csv_content = text_reader.read(queue)
image_path, mask_path = tf.decode_csv(
csv_content, record_defaults=[[""], [""]])
image_file = tf.read_file(image_path)
mask_file = tf.read_file(mask_path)
image = tf.image.decode_jpeg(image_file, channels=3)
image.set_shape([640, 960, 3])
image = tf.cast(image, tf.float32)
mask = tf.image.decode_jpeg(mask_file, channels=1)
mask.set_shape([640, 960, 1])
mask = tf.cast(mask, tf.float32)
mask = mask / (tf.reduce_max(mask) + 1e-7)
if augmentation:
image, mask = image_augmentation(image, mask)
return image, mask
def conv_conv_pool(input_,
n_filters,
training,
flags,
name,
pool=True,
activation=tf.nn.relu):
"""{Conv -> BN -> RELU}x2 -> {Pool, optional}
Args:
input_ (4-D Tensor): (batch_size, H, W, C)
n_filters (list): number of filters [int, int]
training (1-D Tensor): Boolean Tensor
name (str): name postfix
pool (bool): If True, MaxPool2D
activation: Activaion functions
Returns:
net: output of the Convolution operations
pool (optional): output of the max pooling operations
"""
net = input_
with tf.variable_scope("layer{}".format(name)):
for i, F in enumerate(n_filters):
net = tf.layers.conv2d(
net,
F, (3, 3),
activation=None,
padding='same',
kernel_regularizer=tf.contrib.layers.l2_regularizer(flags.reg),
name="conv_{}".format(i + 1))
net = tf.layers.batch_normalization(
net, training=training, name="bn_{}".format(i + 1))
net = activation(net, name="relu{}_{}".format(name, i + 1))
if pool is False:
return net
pool = tf.layers.max_pooling2d(
net, (2, 2), strides=(2, 2), name="pool_{}".format(name))
return net, pool
def upconv_concat(inputA, input_B, n_filter, flags, name):
"""Upsample `inputA` and concat with `input_B`
Args:
input_A (4-D Tensor): (N, H, W, C)
input_B (4-D Tensor): (N, 2*H, 2*H, C2)
name (str): name of the concat operation
Returns:
output (4-D Tensor): (N, 2*H, 2*W, C + C2)
"""
up_conv = upconv_2D(inputA, n_filter, flags, name)
return tf.concat(
[up_conv, input_B], axis=-1, name="concat_{}".format(name))
def upconv_2D(tensor, n_filter, flags, name):
"""Up Convolution `tensor` by 2 times
Args:
tensor (4-D Tensor): (N, H, W, C)
n_filter (int): Filter Size
name (str): name of upsampling operations
Returns:
output (4-D Tensor): (N, 2 * H, 2 * W, C)
"""
return tf.layers.conv2d_transpose(
tensor,
filters=n_filter,
kernel_size=2,
strides=2,
kernel_regularizer=tf.contrib.layers.l2_regularizer(flags.reg),
name="upsample_{}".format(name))
def make_unet(X, training, flags=None):
"""Build a U-Net architecture
Args:
X (4-D Tensor): (N, H, W, C)
training (1-D Tensor): Boolean Tensor is required for batchnormalization layers
Returns:
output (4-D Tensor): (N, H, W, C)
Same shape as the `input` tensor
Notes:
U-Net: Convolutional Networks for Biomedical Image Segmentation
https://arxiv.org/abs/1505.04597
"""
net = X / 127.5 - 1
conv1, pool1 = conv_conv_pool(net, [8, 8], training, flags, name=1)
conv2, pool2 = conv_conv_pool(pool1, [16, 16], training, flags, name=2)
conv3, pool3 = conv_conv_pool(pool2, [32, 32], training, flags, name=3)
conv4, pool4 = conv_conv_pool(pool3, [64, 64], training, flags, name=4)
conv5 = conv_conv_pool(
pool4, [128, 128], training, flags, name=5, pool=False)
up6 = upconv_concat(conv5, conv4, 64, flags, name=6)
conv6 = conv_conv_pool(up6, [64, 64], training, flags, name=6, pool=False)
up7 = upconv_concat(conv6, conv3, 32, flags, name=7)
conv7 = conv_conv_pool(up7, [32, 32], training, flags, name=7, pool=False)
up8 = upconv_concat(conv7, conv2, 16, flags, name=8)
conv8 = conv_conv_pool(up8, [16, 16], training, flags, name=8, pool=False)
up9 = upconv_concat(conv8, conv1, 8, flags, name=9)
conv9 = conv_conv_pool(up9, [8, 8], training, flags, name=9, pool=False)
return tf.layers.conv2d(
conv9,
1, (1, 1),
name='final',
activation=tf.nn.sigmoid,
padding='same')
def IOU_(y_pred, y_true):
"""Returns a (approx) IOU score
intesection = y_pred.flatten() * y_true.flatten()
Then, IOU = 2 * intersection / (y_pred.sum() + y_true.sum() + 1e-7) + 1e-7
Args:
y_pred (4-D array): (N, H, W, 1)
y_true (4-D array): (N, H, W, 1)
Returns:
float: IOU score
"""
H, W, _ = y_pred.get_shape().as_list()[1:]
pred_flat = tf.reshape(y_pred, [-1, H * W])
true_flat = tf.reshape(y_true, [-1, H * W])
intersection = 2 * tf.reduce_sum(pred_flat * true_flat, axis=1) + 1e-7
denominator = tf.reduce_sum(
pred_flat, axis=1) + tf.reduce_sum(
true_flat, axis=1) + 1e-7
return tf.reduce_mean(intersection / denominator)
def make_train_op(y_pred, y_true):
"""Returns a training operation
Loss function = - IOU(y_pred, y_true)
IOU is
(the area of intersection)
--------------------------
(the area of two boxes)
Args:
y_pred (4-D Tensor): (N, H, W, 1)
y_true (4-D Tensor): (N, H, W, 1)
Returns:
train_op: minimize operation
"""
loss = -IOU_(y_pred, y_true)
global_step = tf.train.get_or_create_global_step()
optim = tf.train.AdamOptimizer()
return optim.minimize(loss, global_step=global_step)
def read_flags():
"""Returns flags"""
import argparse
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--epochs", default=1, type=int, help="Number of epochs")
parser.add_argument("--batch-size", default=4, type=int, help="Batch size")
parser.add_argument(
"--logdir", default="logdir", help="Tensorboard log directory")
parser.add_argument(
"--reg", type=float, default=0.1, help="L2 Regularizer Term")
parser.add_argument(
"--ckdir", default="models", help="Checkpoint directory")
flags = parser.parse_args()
return flags
def main(flags):
train = pd.read_csv("./train.csv")
n_train = train.shape[0]
test = pd.read_csv("./test.csv")
n_test = test.shape[0]
current_time = time.strftime("%m/%d/%H/%M/%S")
train_logdir = os.path.join(flags.logdir, "train", current_time)
test_logdir = os.path.join(flags.logdir, "test", current_time)
tf.reset_default_graph()
X = tf.placeholder(tf.float32, shape=[None, 640, 960, 3], name="X")
y = tf.placeholder(tf.float32, shape=[None, 640, 960, 1], name="y")
mode = tf.placeholder(tf.bool, name="mode")
pred = make_unet(X, mode, flags)
tf.add_to_collection("inputs", X)
tf.add_to_collection("inputs", mode)
tf.add_to_collection("outputs", pred)
tf.summary.histogram("Predicted Mask", pred)
tf.summary.image("Predicted Mask", pred)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = make_train_op(pred, y)
IOU_op = IOU_(pred, y)
IOU_op = tf.Print(IOU_op, [IOU_op])
tf.summary.scalar("IOU", IOU_op)
train_csv = tf.train.string_input_producer(['train.csv'])
test_csv = tf.train.string_input_producer(['test.csv'])
train_image, train_mask = get_image_mask(train_csv)
test_image, test_mask = get_image_mask(test_csv, augmentation=False)
X_batch_op, y_batch_op = tf.train.shuffle_batch(
[train_image, train_mask],
batch_size=flags.batch_size,
capacity=flags.batch_size * 5,
min_after_dequeue=flags.batch_size * 2,
allow_smaller_final_batch=True)
X_test_op, y_test_op = tf.train.batch(
[test_image, test_mask],
batch_size=flags.batch_size,
capacity=flags.batch_size * 2,
allow_smaller_final_batch=True)
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
train_summary_writer = tf.summary.FileWriter(train_logdir, sess.graph)
test_summary_writer = tf.summary.FileWriter(test_logdir)
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver()
if os.path.exists(flags.ckdir) and tf.train.checkpoint_exists(
flags.ckdir):
latest_check_point = tf.train.latest_checkpoint(flags.ckdir)
saver.restore(sess, latest_check_point)
else:
try:
os.rmdir(flags.ckdir)
except FileNotFoundError:
pass
os.mkdir(flags.ckdir)
try:
global_step = tf.train.get_global_step(sess.graph)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for epoch in range(flags.epochs):
for step in range(0, n_train, flags.batch_size):
X_batch, y_batch = sess.run([X_batch_op, y_batch_op])
_, step_iou, step_summary, global_step_value = sess.run(
[train_op, IOU_op, summary_op, global_step],
feed_dict={X: X_batch,
y: y_batch,
mode: True})
train_summary_writer.add_summary(step_summary,
global_step_value)
total_iou = 0
for step in range(0, n_test, flags.batch_size):
X_test, y_test = sess.run([X_test_op, y_test_op])
step_iou, step_summary = sess.run(
[IOU_op, summary_op],
feed_dict={X: X_test,
y: y_test,
mode: False})
total_iou += step_iou * X_test.shape[0]
test_summary_writer.add_summary(step_summary,
(epoch + 1) * (step + 1))
saver.save(sess, "{}/model.ckpt".format(flags.ckdir))
finally:
coord.request_stop()
coord.join(threads)
saver.save(sess, "{}/model.ckpt".format(flags.ckdir))
if __name__ == '__main__':
flags = read_flags()
main(flags)