-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproduce.ini
327 lines (291 loc) · 12.8 KB
/
produce.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
######################## Functions #####################
[]
prelude =
import re
def part_to_prolog_arg(part):
if part == 'all':
return "[]"
if part.isdigit():
return part
if part in 'trial train test'.split():
"['{}']".format(part)
return "['{}']".format(part)
def part_to_sick_filename(part):
d = {'trial': 'SICK_trial',
'train': 'SICK_train',
'test': 'SICK_test_annotated'
}
return d[part]
#########################################
# abduction-specific
def flag2par(flag):
'''Interpret acronyms of parameters.
cN - core number, rN - rule application number,
pMN - patterns with M terms and N terms.
'''
# lookup table
mapping = {'al': 'aall',
'ch': 'constchk',
'w3': 'wn_ant, wn_sim, wn_der',
'-k': 'no_kb',
'-w': 'no_wn',
# rN
# induction parameters
'ab': 'align-both',
'an': 'align-no_align',
'aa': 'align-align',
'ch': 'constchk',
'cKB': 'constKB',
'cT': 'compTerms'
# pNM
}
if flag in mapping:
return mapping[flag]
# cores or rule limit
m = re.match('[rcpv](\d+)$', flag)
if m:
n = int(m.group(1))
if flag[0] == 'r':
return "ral({})".format(n)
# used for injecting version for file,
# it has no affect for proving
elif flag[0] == 'v':
return "v{}".format(n)
elif flag[0] == 'c':
if n == 1:
return 'true'
return "parallel({})".format(n if n else '_')
else: # induction parameter
return "patterns-({})".format(expand_patterns(str(n)))
raise ValueError('Unknown flag: {}'.format(flag))
def flags2pars(flags):
return ', '.join([ flag2par(f) for f in flags.split(',') ])
def expand_patterns(pat):
mappings = {'1': '_',
'2': '_@_',
'3': '(_@_)@_, _@(_@_)',
'4': '_@(_@(_@_)), _@((_@_)@_), (_@_)@(_@_), ((_@_)@_)@_, (_@(_@_))@_'
}
patterns = ','.join([ mappings[p] for p in pat ])
return "[{}]".format(patterns)
def TDE2prologList(p):
d = {'T': 'train',
'D': 'trial',
'E': 'test'
}
if p in d:
return "[{}]".format(d[p])
else:
return "[{}]".format(','.join([ d[c] for c in p ]))
#########################################################
# Annotations and Annotated simply-typed Terms
#########################################################
# json files needs to be produced separately, not as part of other rules,
# because it takes time to create them and this avoid their accidental creation
[SICK_NL/anno/spacy_%{size}.json]
cond = %{ size in ('sm', 'md', 'lg') }
dep.raw = SICK_NL/raw.spl
dep.py = python/spacy_lex_anno.py
recipe =
python3 %{py} -s %{size} %{raw} %{target}
[SICK_NL/anno/alpino.json]
dep.alpino_xml_dir = SICK_NL/parses/alpino_xml
dep.py = python/alpino_anno.py
recipe =
python3 %{py} %{alpino_xml_dir} %{target}
# old rule. now LangPro puts trees and lex anno on the fly
#[SICK_NL/anno_terms/%{parser}.%{anno}.pl]
#dep.anno = SICK_NL/anno/%{anno}.json
#dep.parser = SICK_NL/parses/%{parser}.pl
#dep.sen = SICK_NL/sen.pl
#dep.prolog = prolog/tlg_to_tt.pl
#recipe =
# swipl -g "write_anno_tts('%{target}', '%{anno}'), halt" -f %{prolog} %{parser} %{sen}
[SICK_NL/parses/%{parser}.pl]
cond = %{ parser in ('alpino_aethel') }
dep.py = python/alpino_terms.py
dep.xml = SICK_NL/parses/alpino_xml
recipe =
# needs python 3.10 due to aethel convertor
python3.10 %{py} %{xml} > %{target}
#########################################################
# LaTex and PDF
#########################################################
[SICK_NL/latex/%{parser}.%{anno}.%{part}.tex]
cond = %{ (part in 'yes no unknown trial train test'.split()) or part.isdigit() }
anno = SICK_NL/anno/%{anno}.json
dep.parser = SICK_NL/parses/%{parser}.pl
dep.sen = SICK_NL/sen.pl
dep.main = prolog/main.pl
filter = %{ part_to_prolog_arg(part) }
predicate = %{ 'tlg_pid_to_latex' if part.isdigit() else 'tlg_ids_to_latex' }
recipe =
swipl -g "%{predicate}('%{anno}', %{filter}, '%{target}'), halt" -f %{main} %{parser} %{sen}
[SICK_NL/latex/%{filename}.pdf]
dep.tex = SICK_NL/latex/%{filename}.tex
# lualatex is for large files whiel pdflatex is better for files with non-asci symbols e.g.SICKNL-1964
latex = %{ 'pdflatex' if filename[-1].isdigit() else 'hash_extra=5000000 max_strings=5000000 lualatex' }
recipe =
%{latex} --output-directory=SICK_NL/latex/ %{tex} > ${target}.log
rm SICK_NL/latex/%{filename}.{log,aux,tex}
#########################################################
# Stats
#########################################################
#stats.train_trial.alpino.spacy_lg.tree_fix
[stats.%{part_part}.%{parser}.%{anno}.tree_fix]
type = task
parts = %{ ','.join(part_part.split('_')) }
py = python/fixing_rules_per_sen.py
anno_json = SICK_NL/anno/%{anno}.json
recipe =
swipl -g "parList([parts([%{parts}]), anno_json('%{anno_json}'), 'fix']), test_tlg_to_llf, halt" -f prolog/main.pl SICK_NL/parses/%{parser}.pl SICK_NL/sen.pl | python3 %{py} SICK_NL/sen.pl
#########################################################
# Running Theorem Proving with different parse trees
#########################################################
[Results/%{part}/%{parser}.%{anno}.ans]
cond = %{ part in 'trial train test'.split() and parser in 'alpino npn npn_robbert'.split() and anno in ('spacy_lg','alpino') }
dep.main = prolog/main.pl
dep.sen = SICK_NL/sen.pl
dep.parser_pl = SICK_NL/parses/%{parser}.pl
anno_json = SICK_NL/anno/%{anno}.json
dep.wn = WNProlog/wn.pl
log = Results/%{part}/%{parser}.%{anno}.log
sick_part = %{ "parts(['{}'])".format(part) }
recipe =
mkdir -p Results/%{part}/
( time swipl -g "parList([%{sick_part}, lang(nl), parallel(_), aall, wn_ant, wn_sim, wn_der, constchck, allInt, anno_json('%{anno_json}'), waif('%{target}')]), entail_all, halt" -f %{main} %{parser_pl} %{sen} %{wn} ) > %{log} 2>&1
# Results/trial/ccg.ans
[Results/%{part}/%{parser}.ans]
cond = %{ part in 'trial train test'.split() and parser in 'ccg eccg'.split()}
dep.main = LangPro/prolog/main.pl
dep.sen = LangPro/ccg_sen_d/%{ part_to_sick_filename(part) }_sen.pl
dep.parser_pl = LangPro/ccg_sen_d/%{ part_to_sick_filename(part) }_%{parser}.pl
dep.wn = LangPro/prolog/knowledge/wn.pl
log = Results/%{part}/%{parser}.log
recipe =
mkdir -p Results/%{part}/
swipl -g "parList([parallel(_), aall, wn_ant, wn_sim, wn_der, constchck, allInt, waif('%{target}')]), entail_all, halt" -f %{main} %{parser_pl} %{sen} %{wn} > %{log} 2>&1
[Results/%{part}/alpino-npn.%{anno}.ans]
cond = %{ part in ('trial','train','test') and anno in ('spacy_lg','alpino')}
dep.alpino = Results/%{part}/alpino.%{anno}.ans
dep.npn = Results/%{part}/npn.%{anno}.ans
dep.py = LangPro/python/evaluate.py
dep.gold = SICK_NL/sen.pl
recipe =
mkdir -p Results/%{part}/
python3 %{py} --sys %{alpino} %{npn} --gld %{gold} --hybrid --write-hybrid %{target}
[Results/%{part}/%{parser}.alpino-spacy_lg.ans]
cond = %{ part in ('trial','train','test') and parser in ('npn','alpino','npn_robbert')}
dep.alpino = Results/%{part}/%{parser}.alpino.ans
dep.spacy = Results/%{part}/%{parser}.spacy_lg.ans
dep.py = LangPro/python/evaluate.py
dep.gold = SICK_NL/sen.pl
recipe =
mkdir -p Results/%{part}/
python3 %{py} --sys %{alpino} %{spacy} --gld %{gold} --hybrid --write-hybrid %{target}
#########################################################
# Evaluation and Combination of System Predictions
# No file making involved, only evaluation
#########################################################
[%{part}.%{parser}.%{anno}.score]
type = task
cond = %{ part in 'trial train test'.split() }
dep.ans = Results/%{part}/%{parser}.%{anno}.ans
recipe =
python3 LangPro/python/evaluate.py --sys %{ans} --gld SICK_NL/sen.pl
# trial.ccg.score
[%{part}.%{parser}.score]
type = task
cond = %{ part in 'trial train test'.split() and parser == 'ccg'}
ans_file = %{ parser if parser == 'ccg' else '{}.alpino-spacy_lg'.format(parser) }
deps = Results/%{part}/%{ans_file}.ans.evaluate
[%{pred_file}.evaluate]
type = task
recipe =
python3 LangPro/python/evaluate.py --sys %{pred_file} --gld SICK_NL/sen.pl
# seperate files with double underscore
[%{pred__files}.hybrid]
type = task
prediction_files = %{ pred__files.replace('__', ' ') }
dep.py = LangPro/python/evaluate.py
dep.gold = SICK_NL/sen.pl
recipe =
python3 %{py} --sys %{prediction_files} --gld %{gold} --hybrid
#########################################################
# Problem-wise Comparison of Predictions
#########################################################
# comparison to gold labels
# trial.npn.spacy_lg.N-EC.comp
# trial.alpino-npn.spacy_lg.N-EC.comp
[%{part}.%{parser}.%{anno}.%{pred_labs}-%{gold_labs}.comp]
type = task
cond = %{ part in 'trial train test'.split() and parser in 'npn alpino alpino-npn'.split() }
dep.ans = Results/%{part}/%{parser}.%{anno}.ans
dep.py = python/xlang_compare.py
dep.src_sen = LangPro/ccg_sen_d/SICK_sen.pl
dep.trg_sen = SICK_NL/sen.pl
recipe =
python3 %{py} --sys %{ans} --src %{src_sen} --trg %{trg_sen} -m %{pred_labs} %{gold_labs} -md
# trial.alpino-npn-vs-ccg.spacy_lg.N-EC.comp
[%{part}.%{parser}-vs-%{ref}.%{anno}.%{pred_labs}-%{gold_labs}.comp]
type = task
cond = %{ part in 'trial train test'.split() and parser in 'npn alpino alpino-npn'.split() }
dep.ans = Results/%{part}/%{parser}.%{anno}.ans
dep.reference = Results/%{part}/%{ ref if 'ccg' in ref else '{}.{}'.format(ref,anno) }.ans
dep.py = python/xlang_compare.py
dep.src_sen = LangPro/ccg_sen_d/SICK_sen.pl
dep.trg_sen = SICK_NL/sen.pl
recipe =
python3 %{py} --sys %{ans} --ref %{reference} --src %{src_sen} --trg %{trg_sen} -m %{pred_labs} %{gold_labs} -md
#########################################################
# N-fold Cross Validation
#########################################################
# Results/CV-3/TD/alpino.spacy_lg/r50,c0_ab,ch,cKB,cT,p123.log
[%{results}/CV-%{n}/%{part}/%{parser}.%{anno}/%{proving_flags}_%{abduction_flags}.log]
cond = %{ parser in ('npn', 'alpino') }
# parse flags acronyms
ppars = %{ flags2pars(proving_flags) }
apars = %{ flags2pars(abduction_flags) }
anno_json = SICK_NL/anno/%{anno}.json
dep.sen = SICK_NL/sen.pl
dep.trees = SICK_NL/parses/%{parser}.pl
dep.wn = WNProlog/wn.pl
parts = %{ TDE2prologList(part) }
recipe =
mkdir -p %{results}/CV-%{n}/%{part}/%{parser}.%{anno}/
( time swipl -g "parList([lang(nl), anno_json('%{anno_json}'), complete_tree, allInt, aall, wn_ant, wn_sim, wn_der, constchck, %{ppars}]), load_ccg_sen_probs(%{parts}, _, _), cv_induce_knowledge(_PrIDs, _Answers, [fold-%{n}, %{apars}])" -t halt -f prolog/main.pl %{sen} %{trees} %{wn} ) > %{target} 2>&1
#########################################################
# Abduction & Evaluation
#########################################################
# Results/abd_eva/TD_E/alpino.spacy_lg/r50,c0_ab,ch,cKB,cT,p123.log
[%{results}/abd_eva/%{abd}_%{eva}/%{parser}.%{anno}/%{proving_flags}_%{abduction_flags}.log]
cond = %{ parser in ('npn', 'alpino', 'npn_robbert') and anno in ('alpino', 'spacy_lg') }
# parse flags acronyms
ppars = %{ flags2pars(proving_flags) }
apars = %{ flags2pars(abduction_flags) }
anno_json = SICK_NL/anno/%{anno}.json
dep.sen = SICK_NL/sen.pl
dep.trees = SICK_NL/parses/%{parser}.pl
dep.wn = WNProlog/wn.pl
ans = %{ target[:-4] }.ans
abd_parts = %{ TDE2prologList(abd) if abd else '_' }
eva_parts = %{ TDE2prologList(eva) if eva else '_' }
recipe =
mkdir -p %{results}/abd_eva/%{abd}_%{eva}/%{parser}.%{anno}/
( time swipl -g "parList([lang(nl), anno_json('%{anno_json}'), waif('%{ans}'), complete_tree, allInt, aall, wn_ant, wn_sim, wn_der, constchck, %{ppars}]), train_dev_eval_sick_parts((%{abd_parts},[]), _DEV, (%{eva_parts},[]), [%{apars}])" -t halt -f prolog/main.pl %{sen} %{trees} %{wn} ) > %{target} 2>&1
#########################################################
# Batch of experiments
########################################################
[%{paper_results}/final_results.c%{c}.r%{r}]
type = task
log = r%{r},c%{c}_ab,ch,cKB,cT,p123.log
abd_eva_path = %{paper_results}/abd_eva/TD_E
dep.abd_alp_alp = %{abd_eva_path}/alpino.alpino/%{log}
dep.abd_alp_scy = %{abd_eva_path}/alpino.spacy_lg/%{log}
dep.abd_npn_alp = %{abd_eva_path}/npn.alpino/%{log}
dep.abd_npn_scy = %{abd_eva_path}/npn.spacy_lg/%{log}
# cv_path = %{paper_results}/CV-3/TD
# dep.cv_alp_alp = %{cv_path}/alpino.alpino/%{log}
# dep.cv_alp_scy = %{cv_path}/alpino.spacy_lg/%{log}
# dep.cv_npn_alp = %{cv_path}/npn.alpino/%{log}
# dep.cv_npn_scy = %{cv_path}/npn.spacy_lg/%{log}