forked from llrs/bugzilla_viz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbugRzilla_review_script.R
127 lines (109 loc) · 3.52 KB
/
bugRzilla_review_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# loading packages
library(dplyr)
library(dbplyr)
library(RMySQL)
library(DBI)
library(DT)
library(tidyverse)
library(ggplot2)
library(plotly)
#######################################
# Connect bugRzilla SQL Database with R
#######################################
# Connecting R with MySQL
con <- dbConnect(
MySQL(),
dbname='bugRzilla', # change the database name to your database name
username='root', # change the username to your username
password='1204', # update your password
host='localhost',
port=3306)
# Accessing Tables names from the Database
DBI::dbListTables(con)
##################################################
# Data Exploration of Bugs Table from the Database
##################################################
bugs_df <- tbl(con, "bugs")
#for quick view of the datatypes and the structure of data
glimpse(bugs_df)
# Converting `bugs_df` to `dataframe`
bugs_df <- as.data.frame(bugs_df)
#converting the required fields in the correct datatype format
bugs_df <- bugs_df %>%
mutate_at(vars("creation_ts", "delta_ts", "lastdiffed", "deadline"), as.Date)
# Taking the columns which are useful
bugs_df <- bugs_df %>%
select("bug_id", "bug_severity", "bug_status", "creation_ts", "delta_ts",
"op_sys", "priority", "resolution", "component_id",
"version", "lastdiffed", "deadline")
#for quick view of the datatypes and the structure of data
glimpse(bugs_df)
#showing the `datatable`
datatable(head(bugs_df, 10), options = list(scrollX = TRUE))
################
# Visualizations
################
# Plotting the Time Series graph with the bug_id and creation_ts
bug_id <- bugs_df$bug_id
creation <- bugs_df$creation_ts
data <- data.frame(bug_id, creation)
fig1 <- plot_ly(data,
x = ~creation,
y = ~bug_id,
type = 'scatter',
mode = 'markers')
fig1
# Plotting the Bar graph and adding Trace of Time-Series graph with bug_id and creation_ts to see the spread
fig1 <- plot_ly(data,
x = ~creation,
y = ~bug_id,
type = 'bar',
name = "bug_creation bar")
fig1 <- fig1 %>%
add_trace(fig1,
type = 'scatter',
mode='lines+markers',
name = "bug_creation Time_series")
fig1
# Plotting the Time Series graph with the bug_id and delta_ts
delta <- bugs_df$delta_ts
data <- data.frame(bug_id, delta)
fig2 <- plot_ly(data,
x = ~delta,
y = ~bug_id,
type = 'scatter',
mode = 'markers')
fig2
# Plotting the Time Series graph with the bug_id and deadline
deadline <- bugs_df$deadline
data <- data.frame(bug_id, deadline)
fig3 <- plot_ly(data,
y = ~bug_id,
x = ~deadline,
type = 'scatter',
mode = 'markers')
fig3
# Plotting bar graph with bug_id and resolution
resolution <- bugs_df$resolution
data <- data.frame(bug_id, resolution)
fig4 <- plot_ly(data,
x = ~resolution,
y = ~bug_id,
type = 'bar')
fig4
# Plotting bar graph with bug_id and bug_status
bug_status <- bugs_df$bug_status
data <- data.frame(bug_id, bug_status)
fig5 <- plot_ly(data,
x = ~bug_status,
y = ~bug_id,
type = 'bar')
fig5
# Plotting bar graph with bug_id and bug_severity
bug_severity <- bugs_df$bug_severity
data <- data.frame(bug_id, bug_severity)
fig6 <- plot_ly(data,
x = ~bug_severity,
y = ~bug_id,
type = 'bar')
fig6