-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpipe.c
986 lines (832 loc) · 27.1 KB
/
pipe.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ksim.h"
#include "kir.h"
struct vs_thread {
struct thread t;
struct reg vid;
void *index_buffer;
uint32_t iid;
uint32_t start_vertex;
uint32_t base_vertex;
uint32_t start_instance;
struct vue_buffer buffer;
};
static inline struct value *
ia_state_peek(struct ia_state *s, uint32_t i)
{
return s->vue[i & (ARRAY_LENGTH(s->vue) - 1)];
}
static void
flush_to_vues(struct vue_buffer *b, uint32_t count, struct ia_state *s)
{
/* Transpose the SIMD8 vs_thread back into individual VUEs */
for (uint32_t c = 0; c < count; c++) {
__m256i *vue = urb_handle_to_entry(b->vue_handles.ud[c]);
__m256i offsets = (__m256i) (__v8si) { 0, 8, 16, 24, 32, 40, 48, 56 };
for (uint32_t i = 0; i < gt.vs.urb.size / 32; i++)
vue[i] = _mm256_i32gather_epi32(&b->data[i * 8].d[c], offsets, 4);
/* FIXME: Cut index: ia_state_flush(), ia_state_cut(); else add... */
ia_state_add(s, (struct value *) vue);
}
ksim_assert(s->head - s->tail <= 64);
}
static void
dispatch_vs(struct vs_thread *t, uint32_t iid, uint32_t vid, struct ia_state *state)
{
struct reg *grf = &t->t.grf[0];
/* Not sure what we should make this. */
uint32_t fftid = 0;
uint32_t rest = gt.prim.vertex_count - vid;
uint32_t count;
if (rest > 8)
count = 8;
else
count = rest;
static const struct reg range = { .d = { 0, 1, 2, 3, 4, 5, 6, 7 } };
t->t.mask[0].q[0] = _mm256_cmpgt_epi32(_mm256_set1_epi32(rest), range.ireg);
t->iid = iid;
t->vid.ireg = _mm256_add_epi32(range.ireg, _mm256_set1_epi32(vid));
/* Fixed function header */
grf[0] = (struct reg) {
.ud = {
/* R0.0 - R0.2: MBZ */
0,
0,
0,
/* R0.3: per-thread scratch space, sampler ptr */
gt.vs.sampler_state_address |
gt.vs.scratch_size,
/* R0.4: binding table pointer */
gt.vs.binding_table_address,
/* R0.5: fftid, scratch offset */
gt.vs.scratch_pointer | fftid,
/* R0.6: thread id */
gt.vs.tid++ & 0xffffff,
/* R0.7: Reserved */
0,
}
};
for (uint32_t c = 0; c < count; c++) {
void *entry = alloc_urb_entry(>.vs.urb);
t->buffer.vue_handles.ud[c] = urb_entry_to_handle(entry);
}
grf[1].ireg = t->buffer.vue_handles.ireg;
if (gt.vs.statistics)
gt.vs_invocation_count++;
gt.vs.avx_shader(&t->t);
flush_to_vues(&t->buffer, count, state);
}
static void
validate_vf_state(void)
{
uint32_t vb_used, b;
uint64_t range;
/* Make sure vue is big enough to hold all vertex elements */
ksim_assert(gt.vf.ve_count * 16 <= gt.vs.urb.size);
vb_used = 0;
for (uint32_t i = 0; i < gt.vf.ve_count; i++) {
ksim_assert((1 << gt.vf.ve[i].vb) & gt.vf.vb_valid);
ksim_assert(valid_vertex_format(gt.vf.ve[i].format));
if (gt.vf.ve[i].valid)
vb_used |= 1 << gt.vf.ve[i].vb;
}
/* Check all VEs reference valid VBs. */
ksim_assert((vb_used & gt.vf.vb_valid) == vb_used);
for_each_bit(b, vb_used) {
gt.vf.vb[b].data = map_gtt_offset(gt.vf.vb[b].address, &range);
ksim_assert(gt.vf.vb[b].size <= range);
}
/* Check that SGVs are written within bounds */
ksim_assert(gt.vf.iid_element * 16 < gt.vs.urb.size);
ksim_assert(gt.vf.vid_element * 16 < gt.vs.urb.size);
}
static void
dump_sf_clip_viewport(void)
{
const float *vp = gt.sf.viewport;
spam("viewport matrix:\n");
for (uint32_t i = 0; i < 6; i++)
spam(" %20.4f\n", vp[i]);
spam("guardband: %f,%f - %f,%f\n",
gt.sf.guardband.x0, gt.sf.guardband.y0,
gt.sf.guardband.x1, gt.sf.guardband.y1);
spam("depth viewport: %f-%f\n",
gt.cc.viewport[0], gt.cc.viewport[1]);
}
void
prim_queue_init(struct prim_queue *q, enum GEN9_3D_Prim_Topo_Type topology, struct urb *urb)
{
switch (topology) {
case _3DPRIM_LINELIST:
case _3DPRIM_LINESTRIP:
case _3DPRIM_LINELOOP:
q->prim_size = 2;
break;
default:
q->prim_size = 3;
break;
}
q->topology = topology;
q->count = 0;
q->urb = urb;
q->free_tail = 0;
q->free_head = 0;
}
static void
prim_queue_flush_to_gs(struct prim_queue *q)
{
struct value **vues[8];
for (uint32_t i = 0; i < q->count; i++)
vues[i] = q->prim[i];
if (q->count > 0)
dispatch_gs(vues, q->prim_size, q->count);
}
static void
prim_queue_flush_to_wm(struct prim_queue *q)
{
for (uint32_t i = 0; i < q->count; i++) {
struct value **vue = q->prim[i];
for (int j = 0; j < q->prim_size; j++) {
if (vue[j][0].header.clip_flags)
goto trivial_reject;
}
rasterize_primitive(vue, q->topology);
trivial_reject:
;
}
}
void
prim_queue_flush(struct prim_queue *q)
{
if (gt.gs.enable && q->urb != >.gs.urb)
prim_queue_flush_to_gs(q);
else
prim_queue_flush_to_wm(q);
q->count = 0;
for (uint32_t i = q->free_tail; i != q->free_head; i++) {
struct value *vue = q->free_queue[i & (ARRAY_LENGTH(q->free_queue) - 1)];
free_urb_entry(q->urb, vue);
}
q->free_tail = q->free_head;
}
void
prim_queue_add(struct prim_queue *q, struct value **vue, uint32_t parity)
{
uint32_t provoking;
switch (q->topology) {
case _3DPRIM_TRILIST:
case _3DPRIM_TRISTRIP:
provoking = gt.sf.tri_strip_provoking;
break;
case _3DPRIM_TRIFAN:
provoking = gt.sf.tri_fan_provoking;
break;
case _3DPRIM_POLYGON:
case _3DPRIM_QUADLIST:
case _3DPRIM_QUADSTRIP:
default:
provoking = 0;
break;
case _3DPRIM_RECTLIST:
/* The documentation requires a specific vertex
* ordering, but the hw doesn't actually care. Our
* rasterizer does though, so rotate vertices to make
* sure the first to edges are axis parallel. */
if (vue[0][1].vec4.x != vue[1][1].vec4.x &&
vue[0][1].vec4.y != vue[1][1].vec4.y) {
ksim_warn("invalid rect list vertex order\n");
provoking = 1;
} else if (vue[1][1].vec4.x != vue[2][1].vec4.x &&
vue[1][1].vec4.y != vue[2][1].vec4.y) {
ksim_warn("invalid rect list vertex order\n");
provoking = 2;
} else {
provoking = 0;
}
break;
}
static const int indices[5] = { 0, 1, 2, 0, 1 };
q->prim[q->count][0] = vue[indices[provoking]];
q->prim[q->count][1] = vue[indices[provoking + 1 + parity]];
q->prim[q->count][2] = vue[indices[provoking + 2 - parity]];
q->count++;
if (q->count == 8)
prim_queue_flush(q);
}
uint32_t
ia_state_flush(struct ia_state *s, struct prim_queue *q)
{
struct value *vue[32];
int count;
uint32_t free_tail = s->tail;
switch (s->topology) {
case _3DPRIM_TRILIST:
while (s->head - s->tail >= 3) {
vue[0] = ia_state_peek(s, s->tail + 0);
vue[1] = ia_state_peek(s, s->tail + 1);
vue[2] = ia_state_peek(s, s->tail + 2);
prim_queue_add(q, vue, 0);
s->tail += 3;
gt.ia_primitives_count++;
}
break;
case _3DPRIM_TRISTRIP:
while (s->head - s->tail >= 3) {
vue[0] = ia_state_peek(s, s->tail + 0);
vue[1] = ia_state_peek(s, s->tail + 1);
vue[2] = ia_state_peek(s, s->tail + 2);
prim_queue_add(q, vue, s->tristrip_parity);
s->tail += 1;
s->tristrip_parity = 1 - s->tristrip_parity;
gt.ia_primitives_count++;
}
break;
case _3DPRIM_POLYGON:
case _3DPRIM_TRIFAN:
if (s->first_vertex == NULL) {
/* We always have at least one vertex
* when we get, so this is safe. */
ksim_assert(s->head - s->tail >= 1);
s->first_vertex = ia_state_peek(s, s->tail);
s->tail++;
free_tail++;
}
while (s->head - s->tail >= 2) {
vue[0] = s->first_vertex;
vue[1] = ia_state_peek(s, s->tail + 0);
vue[2] = ia_state_peek(s, s->tail + 1);
prim_queue_add(q, vue, 0);
s->tail += 1;
gt.ia_primitives_count++;
}
break;
case _3DPRIM_QUADLIST:
while (s->head - s->tail >= 4) {
vue[0] = ia_state_peek(s, s->tail + 3);
vue[1] = ia_state_peek(s, s->tail + 0);
vue[2] = ia_state_peek(s, s->tail + 1);
prim_queue_add(q, vue, 0);
vue[0] = ia_state_peek(s, s->tail + 3);
vue[1] = ia_state_peek(s, s->tail + 1);
vue[2] = ia_state_peek(s, s->tail + 2);
prim_queue_add(q, vue, 0);
s->tail += 4;
gt.ia_primitives_count++;
}
break;
case _3DPRIM_QUADSTRIP:
while (s->head - s->tail >= 4) {
vue[0] = ia_state_peek(s, s->tail + 3);
vue[1] = ia_state_peek(s, s->tail + 0);
vue[2] = ia_state_peek(s, s->tail + 1);
prim_queue_add(q, vue, 0);
vue[0] = ia_state_peek(s, s->tail + 3);
vue[1] = ia_state_peek(s, s->tail + 2);
vue[2] = ia_state_peek(s, s->tail + 0);
prim_queue_add(q, vue, 0);
s->tail += 2;
gt.ia_primitives_count++;
}
break;
case _3DPRIM_RECTLIST:
while (s->head - s->tail >= 3) {
vue[0] = ia_state_peek(s, s->tail + 0);
vue[1] = ia_state_peek(s, s->tail + 1);
vue[2] = ia_state_peek(s, s->tail + 2);
prim_queue_add(q, vue, 0);
s->tail += 3;
}
break;
case _3DPRIM_LINELIST:
while (s->head - s->tail >= 2) {
vue[0] = ia_state_peek(s, s->tail + 0);
vue[1] = ia_state_peek(s, s->tail + 1);
prim_queue_add(q, vue, 0);
s->tail += 2;
}
break;
case _3DPRIM_LINESTRIP:
while (s->head - s->tail >= 2) {
vue[0] = ia_state_peek(s, s->tail + 0);
vue[1] = ia_state_peek(s, s->tail + 1);
prim_queue_add(q, vue, 0);
s->tail += 1;
}
break;
case _3DPRIM_LINELOOP:
if (s->first_vertex == NULL && s->head - s->tail >= 2) {
/* Only set first_vertex if we can draw at
* least one line and advance s->tail.
* Otherwise, when we get the next 3DPRIM_LINELOOP,
* we'll have first_vertex == s->tail, but we
* won't get in here and advance free_tail.
* Result would be double freeing
* first_vertex. */
ksim_assert(s->head - s->tail >= 1);
s->first_vertex = ia_state_peek(s, s->tail);
free_tail++;
}
while (s->head - s->tail >= 2) {
vue[0] = ia_state_peek(s, s->tail + 0);
vue[1] = ia_state_peek(s, s->tail + 1);
prim_queue_add(q, vue, 0);
s->tail += 1;
}
break;
case _3DPRIM_PATCHLIST_1 ... _3DPRIM_PATCHLIST_32:
count = s->topology - _3DPRIM_PATCHLIST_1 + 1;
while (s->head - s->tail >= count) {
for (uint32_t i = 0; i < count; i++)
vue[i] = ia_state_peek(s, s->tail + i);
tessellate_patch(vue);
for (uint32_t i = 0; i < count; i++)
free_urb_entry(>.vs.urb, vue[i]);
s->tail += count;
}
break;
default:
stub("topology %d", s->topology);
s->tail = s->head;
break;
}
return free_tail;
}
uint32_t
ia_state_cut(struct ia_state *s, struct prim_queue *q)
{
struct value *vue[8];
uint32_t free_tail = s->tail;
switch (s->topology) {
case _3DPRIM_LINELOOP:
if (s->first_vertex && s->head - s->tail > 0) {
vue[0] = ia_state_peek(s, s->tail++);
vue[1] = s->first_vertex;
prim_queue_add(q, vue, 0);
gt.ia_primitives_count++;
}
break;
default:
break;
}
/* Add first_vertex back to queue so it'll get freed if caller
* needs to free it. */
if (s->first_vertex)
ia_state_add(s, s->first_vertex);
s->tail = s->head;
s->first_vertex = NULL;
s->tristrip_parity = 0;
return free_tail;
}
void
ia_state_init(struct ia_state *s, enum GEN9_3D_Prim_Topo_Type topology)
{
s->topology = topology;
s->head = 0;
s->tail = 0;
s->tristrip_parity = 0;
s->first_vertex = NULL;
}
static void
dump_vue(struct vs_thread *t)
{
struct vue_buffer *b = &t->buffer;
struct reg v = t->vid;
ksim_trace(TRACE_VF, "Loaded vue for idd=%d, vid=[", t->iid);
for (uint32_t c = 0; c < 8; c++)
ksim_trace(TRACE_VF, " %d", v.ud[c]);
ksim_trace(TRACE_VF, " ], mask=[");
v.ireg = t->t.mask[0].q[0];
for (uint32_t c = 0; c < 8; c++)
ksim_trace(TRACE_VF, " %d", v.ud[c]);
ksim_trace(TRACE_VF, " ]\n");
for (uint32_t i = 0; i < gt.vs.urb.size / 4; i++) {
ksim_trace(TRACE_VF, " 0x%04x: ", (void *) &b->data[i] - (void *) t);
for (uint32_t c = 0; c < 8; c++)
ksim_trace(TRACE_VF, " %8.2f", b->data[i].f[c]);
ksim_trace(TRACE_VF, "\n");
}
}
static struct kir_reg
emit_gather(struct kir_program *prog,
struct kir_reg base, struct kir_reg offset,
uint32_t scale, uint32_t base_offset)
{
/* This little gather helper loads the mask, gathers and then
* invalidates and releases the mask register. vpgatherdd
* writes 0 to the mask register, so we need to reload it for
* each gather and make sure we don't reuse the mask
* register. */
struct kir_reg mask = kir_program_load_v8(prog, offsetof(struct vs_thread, t.mask[0].q[0]));
return kir_program_gather(prog, base, offset, mask, scale, base_offset);
}
static void
emit_load_format_simd8(struct kir_program *prog, enum GEN9_SURFACE_FORMAT format,
struct kir_reg base, struct kir_reg offset, struct kir_reg *dst)
{
switch (format) {
case SF_R32_FLOAT:
case SF_R32_SINT:
case SF_R32_UINT:
dst[0] = emit_gather(prog, base, offset, 1, 0);
dst[1] = kir_program_immd(prog, 0);
dst[2] = kir_program_immd(prog, 0);
dst[3] = kir_program_immf(prog, 1.0f);
break;
case SF_R32G32_FLOAT:
case SF_R32G32_SINT:
case SF_R32G32_UINT:
dst[0] = emit_gather(prog, base, offset, 1, 0);
dst[1] = emit_gather(prog, base, offset, 1, 4);
dst[2] = kir_program_immd(prog, 0);
dst[3] = kir_program_immf(prog, 1.0f);
break;
case SF_R32G32B32_FLOAT:
case SF_R32G32B32_SINT:
case SF_R32G32B32_UINT:
dst[0] = emit_gather(prog, base, offset, 1, 0);
dst[1] = emit_gather(prog, base, offset, 1, 4);
dst[2] = emit_gather(prog, base, offset, 1, 8);
dst[3] = kir_program_immf(prog, 1.0f);
break;
case SF_R32G32B32A32_FLOAT:
case SF_R32G32B32A32_SINT:
case SF_R32G32B32A32_UINT:
dst[0] = emit_gather(prog, base, offset, 1, 0);
dst[1] = emit_gather(prog, base, offset, 1, 4);
dst[2] = emit_gather(prog, base, offset, 1, 8);
dst[3] = emit_gather(prog, base, offset, 1, 12);
break;
default:
stub("fetch format");
ksim_unreachable("fetch_format");
break;
}
}
static void
emit_vertex_fetch(struct kir_program *prog)
{
kir_program_comment(prog, "vertex fetch");
struct kir_reg vid = kir_program_load_v8(prog, offsetof(struct vs_thread, vid));
if (gt.prim.start_vertex > 0) {
kir_program_load_uniform(prog, offsetof(struct vs_thread, start_vertex));
vid = kir_program_alu(prog, kir_addd, vid, prog->dst);
}
if (gt.prim.access_type == RANDOM) {
kir_program_comment(prog, "vertex fetch: index buffer fetch");
/* FIXME: INDEX_BYTE and INDEX_WORD can read outside
* the index buffer. */
uint64_t range;
void *index_buffer = map_gtt_offset(gt.vf.ib.address, &range);
struct kir_reg dst, base;
base = kir_program_set_load_base_imm(prog, index_buffer);
switch (gt.vf.ib.format) {
case INDEX_BYTE:
dst = emit_gather(prog, base, vid, 1, 0);
dst = kir_program_alu(prog, kir_shli, dst, 24);
dst = kir_program_alu(prog, kir_shri, dst, 24);
break;
case INDEX_WORD:
dst = emit_gather(prog, base, vid, 2, 0);
dst = kir_program_alu(prog, kir_shli, dst, 16);
dst = kir_program_alu(prog, kir_shri, dst, 16);
break;
case INDEX_DWORD:
dst = emit_gather(prog, base, vid, 4, 0);
break;
}
if (gt.prim.base_vertex > 0) {
kir_program_load_uniform(prog, offsetof(struct vs_thread, base_vertex));
dst = kir_program_alu(prog, kir_addd, dst, prog->dst);
}
vid = dst;
}
for (uint32_t i = 0; i < gt.vf.ve_count; i++) {
struct ve *ve = >.vf.ve[i];
struct vb *vb = >.vf.vb[ve->vb];
struct kir_reg index;
if (!gt.vf.ve[i].valid)
continue;
kir_program_comment(prog, "vertex fetch: ve %d: offset %d, pitch %d, format %d, vb %p",
i, ve->offset, vb->pitch, ve->format, vb->data);
if (gt.vf.ve[i].instancing) {
if (gt.vf.ve[i].step_rate > 1) {
/* FIXME: index = _mm256_set1_epi32(gt.prim.start_instance + iid / gt.vf.ve[i].step_rate); */
stub("instancing step rate > 1");
index = kir_program_load_uniform(prog, offsetof(struct vs_thread, iid));
} else {
index = kir_program_load_uniform(prog, offsetof(struct vs_thread, iid));
}
if (gt.prim.start_instance > 0) {
kir_program_load_uniform(prog, offsetof(struct vs_thread, start_instance));
index = kir_program_alu(prog, kir_addd, index, prog->dst);
}
} else {
index = vid;
}
struct kir_reg offset;
if (vb->pitch == 0) {
offset = kir_program_immd(prog, ve->offset);
} else if (is_power_of_two(vb->pitch)) {
uint32_t pitch_log2 = __builtin_ffs(vb->pitch) - 1;
offset = kir_program_alu(prog, kir_shli, index, pitch_log2);
} else if (vb->pitch % 3 == 0 && is_power_of_two(vb->pitch / 3)) {
offset = kir_program_alu(prog, kir_shli, index, 1);
offset = kir_program_alu(prog, kir_addd, offset, index);
uint32_t pitch_log2 = __builtin_ffs(vb->pitch / 3) - 1;
offset = kir_program_alu(prog, kir_shli, offset, pitch_log2);
} else {
kir_program_immd(prog, vb->pitch);
offset = kir_program_alu(prog, kir_muld, index, prog->dst);
}
if (vb->pitch > 0 && ve->offset > 0) {
kir_program_immd(prog, ve->offset);
offset = kir_program_alu(prog, kir_addd, offset, prog->dst);
}
struct kir_reg dst[4];
struct kir_reg base = kir_program_set_load_base_imm(prog, vb->data);
emit_load_format_simd8(prog, ve->format, base, offset, dst);
for (uint32_t c = 0; c < 4; c++) {
struct kir_reg src;
switch (ve->cc[c]) {
case VFCOMP_NOSTORE:
continue;
case VFCOMP_STORE_SRC:
src = dst[c];
break;
case VFCOMP_STORE_0:
src = kir_program_immf(prog, 0.0f);
break;
case VFCOMP_STORE_1_FP:
src = kir_program_immf(prog, 1.0f);
break;
case VFCOMP_STORE_1_INT:
src = kir_program_immd(prog, 1);
break;
case VFCOMP_STORE_PID:
ksim_unreachable("VFCOMP_STORE_PID");
break;
}
kir_program_store_v8(prog, offsetof(struct vs_thread,
buffer.data[i * 4 + c]), src);
}
}
if (gt.vf.iid_enable || gt.vf.vid_enable) {
kir_program_comment(prog, "vertex fetch: system generated values");
if (gt.vf.iid_enable) {
kir_program_load_uniform(prog, offsetof(struct vs_thread, iid));
uint32_t reg = gt.vf.iid_element * 4 + gt.vf.iid_component;
kir_program_store_v8(prog, offsetof(struct vs_thread,
buffer.data[reg]), prog->dst);
}
if (gt.vf.vid_enable) {
kir_program_load_v8(prog, offsetof(struct vs_thread, vid));
uint32_t reg = gt.vf.vid_element * 4 + gt.vf.vid_component;
kir_program_store_v8(prog, offsetof(struct vs_thread,
buffer.data[reg]), prog->dst);
}
}
if (trace_mask & TRACE_URB)
kir_program_call(prog, dump_vue, 0);
}
static void
emit_load_vue(struct kir_program *prog, uint32_t grf)
{
uint32_t src = offsetof(struct vs_thread, buffer.data[gt.vs.vue_read_offset * 2 * 4]);
uint32_t dst = offsetof(struct vs_thread, t.grf[grf]);
kir_program_comment(prog, "copy vue");
for (uint32_t i = 0; i < gt.vs.vue_read_length * 2 * 4; i++) {
kir_program_load_v8(prog, src + i * 32);
kir_program_store_v8(prog, dst + i * 32, prog->dst);
}
}
#define vue_offset(base, field) ((base) + offsetof(struct vue_buffer, field))
static void
emit_perspective_divide(struct kir_program *prog, uint32_t base)
{
/* vrcpps doesn't have sufficient precision for perspective
* divide. We can use vdivps (latency 21/throughput 13) or do
* a Newton-Raphson step on vrcpps. This turns into vrcpps,
* vfnmadd213ps and vmulps, with latencies 7, 5 and 5, which
* is slightly better.
*/
kir_program_comment(prog, "perspective divide");
struct kir_reg w = kir_program_load_v8(prog, vue_offset(base, w));
struct kir_reg inv_w0 = kir_program_alu(prog, kir_rcp, w);
/* NR step: inv_w = inv_w0 * (2 - w * inv_w0) */
struct kir_reg two = kir_program_immf(prog, 2.0f);
kir_program_alu(prog, kir_nmaddf, w, inv_w0, two);
struct kir_reg inv_w = kir_program_alu(prog, kir_mulf, inv_w0, prog->dst);
const struct kir_reg x = kir_program_load_v8(prog, vue_offset(base, x));
kir_program_alu(prog, kir_mulf, x, inv_w);
kir_program_store_v8(prog, vue_offset(base, x), prog->dst);
const struct kir_reg y = kir_program_load_v8(prog, vue_offset(base, y));
kir_program_alu(prog, kir_mulf, y, inv_w);
kir_program_store_v8(prog, vue_offset(base, y), prog->dst);
const struct kir_reg z = kir_program_load_v8(prog, vue_offset(base, z));
kir_program_alu(prog, kir_mulf, z, inv_w);
kir_program_store_v8(prog, vue_offset(base, z), prog->dst);
kir_program_store_v8(prog, vue_offset(base, w), inv_w);
}
static void
emit_clip_test(struct kir_program *prog, uint32_t base)
{
kir_program_comment(prog, "clip tests");
struct kir_reg x0 = kir_program_load_uniform(prog, vue_offset(base, clip.x0));
struct kir_reg x1 = kir_program_load_uniform(prog, vue_offset(base, clip.x1));
struct kir_reg y0 = kir_program_load_uniform(prog, vue_offset(base, clip.y0));
struct kir_reg y1 = kir_program_load_uniform(prog, vue_offset(base, clip.y1));
struct kir_reg x = kir_program_load_v8(prog, vue_offset(base, x));
struct kir_reg y = kir_program_load_v8(prog, vue_offset(base, y));
struct kir_reg x0f = kir_program_alu(prog, kir_cmpf, x0, x, _CMP_LT_OS);
struct kir_reg x1f = kir_program_alu(prog, kir_cmpf, x1, x, _CMP_GT_OS);
struct kir_reg y0f = kir_program_alu(prog, kir_cmpf, y0, y, _CMP_LT_OS);
struct kir_reg y1f = kir_program_alu(prog, kir_cmpf, y1, y, _CMP_GT_OS);
struct kir_reg xf = kir_program_alu(prog, kir_or, x0f, x1f);
struct kir_reg yf = kir_program_alu(prog, kir_or, y0f, y1f);
struct kir_reg f = kir_program_alu(prog, kir_or, xf, yf);
kir_program_store_v8(prog, vue_offset(base, clip_flags), f);
}
static void
emit_viewport_transform(struct kir_program *prog, uint32_t base)
{
kir_program_comment(prog, "viewport transform");
struct kir_reg m00 = kir_program_load_uniform(prog, vue_offset(base, vp.m00));
struct kir_reg m11 = kir_program_load_uniform(prog, vue_offset(base, vp.m11));
struct kir_reg m22 = kir_program_load_uniform(prog, vue_offset(base, vp.m22));
struct kir_reg m30 = kir_program_load_uniform(prog, vue_offset(base, vp.m30));
struct kir_reg m31 = kir_program_load_uniform(prog, vue_offset(base, vp.m31));
struct kir_reg m32 = kir_program_load_uniform(prog, vue_offset(base, vp.m32));
struct kir_reg x = kir_program_load_v8(prog, vue_offset(base, x));
struct kir_reg y = kir_program_load_v8(prog, vue_offset(base, y));
struct kir_reg z = kir_program_load_v8(prog, vue_offset(base, z));
struct kir_reg xs = kir_program_alu(prog, kir_maddf, x, m00, m30);
struct kir_reg ys = kir_program_alu(prog, kir_maddf, y, m11, m31);
struct kir_reg zs = kir_program_alu(prog, kir_maddf, z, m22, m32);
kir_program_store_v8(prog, vue_offset(base, x), xs);
kir_program_store_v8(prog, vue_offset(base, y), ys);
kir_program_store_v8(prog, vue_offset(base, z), zs);
}
void
emit_vertex_post_processing(struct kir_program *prog, uint32_t base)
{
if (!gt.clip.perspective_divide_disable)
emit_perspective_divide(prog, base);
if (gt.clip.guardband_clip_test_enable ||
gt.clip.viewport_clip_test_enable)
emit_clip_test(prog, base);
if (gt.sf.viewport_transform_enable)
emit_viewport_transform(prog, base);
}
static void
compile_vs(void)
{
struct kir_program prog;
ksim_trace(TRACE_EU | TRACE_AVX, "jit vs\n");
kir_program_init(&prog,
gt.vs.binding_table_address,
gt.vs.sampler_state_address);
prog.urb_offset = offsetof(struct vs_thread, buffer.data);
prog.urb_length = sizeof(((struct vue_buffer *)0)->data);
uint32_t grf;
if (gt.vs.enable) {
grf = emit_load_constants(&prog, >.vs.curbe,
gt.vs.urb_start_grf);
emit_vertex_fetch(&prog);
emit_load_vue(&prog, grf);
kir_program_comment(&prog, "eu vs");
kir_program_emit_shader(&prog, gt.vs.ksp);
} else {
/* Always need to fetch, even if we don't have a VS. */
emit_vertex_fetch(&prog);
}
if (trace_mask & TRACE_URB)
kir_program_call(&prog, dump_vue, 0);
if (!gt.gs.enable && !gt.hs.enable)
emit_vertex_post_processing(&prog,
offsetof(struct vs_thread, buffer));
if (trace_mask & TRACE_URB)
kir_program_call(&prog, dump_vue, 0);
kir_program_add_insn(&prog, kir_eot);
gt.vs.avx_shader = kir_program_finish(&prog);
}
void
init_vue_buffer(struct vue_buffer *b)
{
if (gt.clip.guardband_clip_test_enable) {
b->clip = gt.sf.guardband;
} else {
struct rectanglef vp_clip = { -1.0f, -1.0f, 1.0f, 1.0f };
b->clip = vp_clip;
}
if (gt.sf.viewport_transform_enable) {
const float *vp = gt.sf.viewport;
b->vp.m00 = vp[0];
b->vp.m11 = vp[1];
b->vp.m22 = vp[2];
b->vp.m30 = vp[3];
b->vp.m31 = vp[4];
b->vp.m32 = vp[5];
}
}
static void
init_vs_thread(struct vs_thread *t)
{
t->start_vertex = gt.prim.start_vertex;
t->base_vertex = gt.prim.base_vertex;
t->start_instance = gt.prim.start_instance;
init_vue_buffer(&t->buffer);
load_constants(&t->t, >.vs.curbe);
}
void
dispatch_primitive(void)
{
validate_vf_state();
validate_urb_state();
if (gt.sf.viewport_transform_enable)
dump_sf_clip_viewport();
ksim_assert(gt.vs.simd8 || !gt.vs.enable);
if (gt.ia.topology < _3DPRIM_PATCHLIST_1)
ksim_assert(!gt.hs.enable && !gt.ds.enable && !gt.te.enable);
else
ksim_assert(gt.hs.enable && gt.ds.enable && gt.te.enable);
if (gt.hs.enable) {
ksim_assert(gt.hs.dispatch_mode == DISPATCH_MODE_SINGLE_PATCH);
ksim_assert(gt.te.domain == TRI);
ksim_assert(gt.te.topology == OUTPUT_TRI_CW ||
gt.te.topology == OUTPUT_TRI_CCW);
ksim_assert(gt.ds.dispatch_mode == DISPATCH_MODE_SIMD8_SINGLE_PATCH);
}
if (gt.gs.enable) {
ksim_assert(gt.gs.dispatch_mode == DISPATCH_MODE_SIMD8);
ksim_assert(gt.gs.instance_count == 1);
}
gt.depth.write_enable =
gt.depth.write_enable0 && gt.depth.write_enable1;
uint64_t range;
gt.depth.hiz_buffer = map_gtt_offset(gt.depth.hiz_address, &range);
gt.depth.buffer = map_gtt_offset(gt.depth.address, &range);
/* Configure csr to round toward zero to make vcvtps2dq match
* the GEN EU behavior when converting from float to int. This
* may disagree with the rounding mode programmed in
* 3DSTATE_PS etc, which only affects rounding of internal
* intermediate float results. */
const uint32_t csr_default =
_MM_MASK_INVALID |
_MM_MASK_DENORM |
_MM_MASK_DIV_ZERO |
_MM_MASK_OVERFLOW |
_MM_MASK_UNDERFLOW |
_MM_MASK_INEXACT |
_MM_ROUND_TOWARD_ZERO;
_mm_setcsr(csr_default);
reset_shader_pool();
compile_vs();
compile_hs();
compile_ds();
compile_gs();
compile_ps();
struct vs_thread t;
init_vs_thread(&t);
struct ia_state state;
struct prim_queue pq;
uint32_t tail;
ia_state_init(&state, gt.ia.topology);
prim_queue_init(&pq, gt.ia.topology, >.vs.urb);
for (uint32_t iid = 0; iid < gt.prim.instance_count; iid++) {
for (uint32_t i = 0; i < gt.prim.vertex_count; i += 8) {
dispatch_vs(&t, iid, i, &state);
tail = ia_state_flush(&state, &pq);
for (uint32_t i = tail; i < state.tail; i++)
prim_queue_free_vue(&pq, ia_state_peek(&state, i));
}
tail = ia_state_cut(&state, &pq);
for (uint32_t i = tail; i < state.tail; i++)
prim_queue_free_vue(&pq, ia_state_peek(&state, i));
}
prim_queue_flush(&pq);
if (gt.vf.statistics)
gt.ia_vertices_count +=
gt.prim.vertex_count * gt.prim.instance_count;
wm_flush();
}