-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
402 lines (329 loc) · 17.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
import plotly.express as px
from pysurvival.models.semi_parametric import NonLinearCoxPHModel
import pandas as pd
from dash.dependencies import Input, Output, State
from pysurvival.utils import load_model
from toolbox import *
from dash_table import DataTable
#read torch models
pfsMod = load_model('modelData/final_pfs.zip')
rfsMod = load_model('modelData/final_rfs.zip')
pfsModMMC = load_model('modelData/MMCPFS.zip')
rfsModMMC = load_model('modelData/MMCRFS.zip')
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css', dbc.themes.GRID]
app = dash.Dash(__name__, external_stylesheets = external_stylesheets)
#app.css.config.serve_locally = True
#app.scripts.config.serve_locally = True
app.layout = html.P(id = 'page_content', className = 'app_body', children = [
dbc.Row(
[ dbc.Col([
html.H2(children = 'Deep learning-based recalibration of CUETO and EORTC prediction tools for recurrence and progression in non-muscle-invasive bladder cancer.'),
html.H4(children = "Abstract:"),
html.P("Despite being standard tools for decision making, the EORTC, EAU, and CUETO risk groups provide moderate performance in predicting recurrence-free (RFS) and progression-free (PFS) survival in non-muscle-invasive bladder cancer (NMIBC). In this retrospective combined cohort data-mining study, the training group consisted of 3570 patients with de novo diagnosed NMIBC. Predictors included: gender, age, T stage, histopathological grading, tumor burden and diameter, EORTC and CUETO scores, and type of intravesical treatment. The developed models were externally validated on an independent cohort of 322 patients. Models were trained using Cox proportional hazards deep neural networks (deep learning; DeepSurv) with proprietary grid search of hyperparameters. For only surgical and BCG-treated patients, deep-learning-based models achieved c-indices of 0.650 for RFS (95%CI:0.649-0.650) and 0.878 for PFS (95%CI:0.873-0.874) in the training group. In the validation group, c-indices were estimated as 0.651 for RFS (95%CI:0.648-0.654) and 0.881 for PFS (95%CI:0.878-0.885). After inclusion of patients treated with mitomycin, RFS models' c-indices were 0.6415 (95%CI:0.6412-0.6417) and 0.660 (95%CI:0.657-0.664) for training and validation groups, respectively. Models for PFS achieved c-index of 0.885 (95%CI:0.885-0.885) in training set and 0.876 (95%CI:0.873-0.880) at validation. Tool outperformed standard-of-care risk stratification tools and showed no evidence of overfitting."),
html.P("Patient summary: We have created and validated a new tool to predict early-stage bladder cancer recurrence and progression. The application uses advanced artificial intelligence to combine state-of-the-art scales, outperforms them, and is freely available online.")
])]
),
dbc.Row(
[
dbc.Col(
[
html.Div(id = 'inputBar', children = [
html.H4(children = 'Input patient data:'),
html.P("Please enter the values of following parameters: ", className = 'normalny'),
html.P(" "),
#gender
html.Label('Gender [M/F] '),
dcc.Dropdown(
id = 'gender',
options = [
{'label' : 'Female', 'value' : 1},
{'label' : 'Male', 'value' : 0}
],
value = 1
),
html.P(" "),
#age
html.Label('Age [years]'),
dcc.Input(id = 'age', type = 'number', value = 74),
html.P(" "),
#T
html.Label('T stage [numerical]'),
dcc.Dropdown(
id = 't',
options = [
{'label' : 'Ta', 'value' : 0},
{'label' : 'T1 or CIS', 'value' : 1}
],
value = 0
),
html.P(" "),
#Grading
html.Label('Grade'),
dcc.Dropdown(
id = 'grade',
options = [
{'label' : 'WHO 1973 Grade 1', 'value' : 1},
{'label' : 'WHO 1973 Grade 2', 'value' : 2},
{'label' : 'WHO 1973 Grade 3', 'value' : 3},
{'label' : '(Estimated) WHO 2016 PUNLMP', 'value' : 0.5},
{'label' : '(Estimated) WHO 2016 NILGC', 'value' : 1.5},
{'label' : '(Estimated) WHO 2016 NIHGC', 'value' : 3.01}
],
value = 1
),
html.P(" "),
#nTumors
html.Label('Number of tumors'),
dcc.Dropdown(
id = 'tumors',
options = [
{'label' : 'Single tumor', 'value' : 0},
{'label' : 'Multiple tumors', 'value' : 1}
],
value = 0
),
html.P(" "),
#diameter
html.Label('Diameter [cm]'),
dcc.Dropdown(
id = 'diam',
options = [
{'label' : 'Smaller than 3 cm', 'value' : 0},
{'label' : '3 cm or bigger', 'value' : 1}
],
value = 0
),
#concurrent Cis
#html.Label('Is concurrent CIS present?'),
#dcc.Dropdown(
# id = 'cis',
# options = [
# {'label' : 'Yes', 'value' : 0},
# {'label' : 'No', 'value' : 0}
# ],
# value = 0
#),
dcc.Input(id = 'cis', type = 'hidden', value = 0),
html.P(" "),
#reccurence rate
# html.Label('Prior reccurence rate'),
# html.Div('Unfortunately, our model supports only primary tumors'),
# dcc.Dropdown(
# id = 'recRate',
# options = [
# {'label': 'No prior reccurence', 'value' : 0}
# ],
# value = 0
# ),
#bcg
html.Label('Additional treatment?'),
dcc.Dropdown(
id = 'bcg',
options = [
{'label' : 'none', 'value' : 0},
{'label' : 'BCG', 'value' : 1},
{'label' : 'MMC (mitomycin)', 'value' : 2}
],
value = 1
),
html.P("Note: Using 'none' additional treatment in high-risk patient (e.g. T1 or G3) can provide biased results. We turned off the prediction of PFS if 'none' additional treatment is given; use RFS instead.", className = "footertext"),
html.H5('Calculated clinical scores:'),
DataTable(
id = 'calculatedScores',
columns = [{'name' : i, 'id' : i} for i in ['EORTC P score', 'EORTC R score', 'CUETO P score', 'CUETO R score']]
)
]),
],
),
# dbc.Col(width = 200),
dbc.Col(
[
html.Div(id = 'resultsArea', children = [
html.H4(children = 'Predictions:'),
dcc.Dropdown(
id = 'model',
options = [
{'label' : 'Classical models (for surgery only and BCG-treated patients)', 'value' : 0},
{'label' : 'Extended models (also for MMC-treated patients)', 'value' : 1}
],
value = 0
),
html.P("Note: In 'Classical' models selecting 'MMC' treatment is treated as no additional treatment.", className = "footertext"),
dcc.Graph(id = 'figureOutput', className = "wykres"),
]),
html.H5('Survival probability per year:'),
DataTable(
id = 'survivals',
columns = [{'name' : i, 'id' : i} for i in ['time [years]', 'PFS (95CI)', 'RFS (95CI)']]
)
]
)
]
),
dbc.Row(
[
html.Div(id = 'footer', children = [
html.Br(),
html.P("This software is suplemental to paper entitled 'Deep learning-based recalibration of CUETO and EORTC prediction tools for recurrence and progression in non-muscle-invasive bladder cancer.' by Jobczyk et al.", className = 'footertext'),
html.P("Software authors: Marcin Kaszkowiak, Konrad Stawiski (konrad@konsta.com.pl).", className = 'footertext'),
html.P("Created by Department of Biostatistics and Translational Medicine @ Medical University of Lodz. | biostat.umed.pl", className = 'footertext')
])
]
)
])
@app.callback(
Output(component_id = 'figureOutput', component_property = 'figure'),
[
Input(component_id = 'gender', component_property = 'value'),
Input(component_id = 'age', component_property = 'value'),
Input(component_id = 't', component_property = 'value'),
Input(component_id = 'grade', component_property = 'value'),
Input(component_id = 'tumors', component_property = 'value'),
Input(component_id = 'diam', component_property = 'value'),
Input(component_id = 'cis', component_property = 'value'),
# Input(component_id = 'recRate', component_property = 'value'),
Input(component_id = 'bcg', component_property = 'value'),
Input(component_id = 'model', component_property = 'value')
]
)
def createGraph(gender, age, t, grade, tumors, diam, cis, bcg, model) :
#define a layput of returning figure
fig = go.Figure(
layout = go.Layout(
template = 'simple_white',
xaxis = dict(
title = dict(
text = 'Survival time [years]'
),
range = [0, 5]
),
yaxis = dict(
title = dict(
text = 'Survival probability'
),
range = [0, 1]
),
hovermode = 'x unified',
height = 400
)
)
# calculate EORTC and CUETO scales
recRate = 0
cuetoR, cuetoP = calculateCUETO(gender, age, tumors, t, cis, grade)
eortcR, eortcP = calculateEORTC(tumors, diam, recRate, t, cis, grade)
if bcg == 2:
bcg = 0
mmc = 1
else:
mmc = 0
if model == 0:
varList = [gender, age, t, cis, grade, tumors, diam, bcg, eortcR, eortcP, cuetoR, cuetoP]
rfsSet = generateHighRes(rfsMod.predict_survival(varList)[0], rfsMod.times)
fig.add_trace(go.Scatter(x = rfsSet[0], y = rfsSet[1], name = 'RFS'))
if bcg != 0 or mmc != 0:
pfsSet = generateHighRes(pfsMod.predict_survival(varList)[0], pfsMod.times)
fig.add_trace(go.Scatter(x = pfsSet[0],y = pfsSet[1], name = 'PFS'))
else:
varList = [gender, age, t, cis, grade, tumors, diam, bcg, eortcR, eortcP, cuetoR, cuetoP, mmc]
rfsSet = generateHighRes(rfsModMMC.predict_survival(varList)[0], rfsModMMC.times)
fig.add_trace(go.Scatter(x = rfsSet[0], y = rfsSet[1], name = 'RFS'))
if bcg != 0 or mmc != 0:
pfsSet = generateHighRes(pfsModMMC.predict_survival(varList)[0], pfsModMMC.times)
fig.add_trace(go.Scatter(x = pfsSet[0],y = pfsSet[1], name = 'PFS'))
return fig
@app.callback( #update table for calcualted scores
Output(component_id = 'calculatedScores', component_property = 'data'),
[
Input(component_id = 'gender', component_property = 'value'),
Input(component_id = 'age', component_property = 'value'),
Input(component_id = 't', component_property = 'value'),
Input(component_id = 'grade', component_property = 'value'),
Input(component_id = 'tumors', component_property = 'value'),
Input(component_id = 'diam', component_property = 'value'),
Input(component_id = 'cis', component_property = 'value'),
# Input(component_id = 'model', component_property = 'value'),
# Input(component_id = 'recRate', component_property = 'value')
]
)
def displayScores(gender, age, t, grade, tumors, diam, cis) :
recRate = 0
cuetoR, cuetoP = calculateCUETO(gender, age, tumors, t, cis, grade)
eortcR, eortcP = calculateEORTC(tumors, diam, recRate, t, cis, grade)
ret = pd.DataFrame([[eortcP, eortcR, cuetoP, cuetoR]], columns = ['EORTC P score', 'EORTC R score', 'CUETO P score', 'CUETO R score'])
return ret.to_dict('records')
@app.callback(
Output(component_id = 'survivals', component_property = 'data'),
[
Input(component_id = 'gender', component_property = 'value'),
Input(component_id = 'age', component_property = 'value'),
Input(component_id = 't', component_property = 'value'),
Input(component_id = 'grade', component_property = 'value'),
Input(component_id = 'tumors', component_property = 'value'),
Input(component_id = 'diam', component_property = 'value'),
Input(component_id = 'cis', component_property = 'value'),
# Input(component_id = 'recRate', component_property = 'value'),
Input(component_id = 'bcg', component_property = 'value'),
Input(component_id = 'model', component_property = 'value'),
]
)
def calculateSurvivals(gender, age, t, grade, tumors, diam, cis, bcg, model) :
recRate = 0
cuetoR, cuetoP = calculateCUETO(gender, age, tumors, t, cis, grade)
eortcR, eortcP = calculateEORTC(tumors, diam, recRate, t, cis, grade)
if bcg == 2:
bcg = 0
mmc = 1
else:
mmc = 0
if model == 0:
varList = [gender, age, t, cis, grade, tumors, diam, bcg, eortcR, eortcP, cuetoR, cuetoP]
ret = pd.DataFrame(columns = ['time [years]', 'PFS (95CI)', 'RFS (95CI)'])
for i in range(1, 6) :
#calculate PFS
if bcg == 0 and mmc == 0:
pfs = ["Biased, use RFS."]
rfs = rfsMod.predict_survival(varList, t = i)[0]
tmp = pd.Series(
[i, pfs, '{:.2f}%'.format(rfs * 100)],
index = ret.columns
)
else:
pfs = pfsMod.predict_survival(varList, t = i)[0]
rfs = rfsMod.predict_survival(varList, t = i)[0]
tmp = pd.Series(
[i, '{:.2f}%'.format(pfs * 100), '{:.2f}%'.format(rfs * 100)],
index = ret.columns
)
#pfsL = pfsMod.predict_survival_lower(t = i)
#pfsU = pfsMod.predict_survival_upper(t = i)
#calcullate RFS
#rfsL = rfsMod.predict_survival_lower(t = i)
#rfsU = rfsMod.predict_survival_upper(t = i)
ret = ret.append(tmp, ignore_index = True)
else:
varList = [gender, age, t, cis, grade, tumors, diam, bcg, eortcR, eortcP, cuetoR, cuetoP, mmc]
ret = pd.DataFrame(columns = ['time [years]', 'PFS (95CI)', 'RFS (95CI)'])
for i in range(1, 6) :
#calculate PFS
if bcg == 0 and mmc == 0:
pfs = ["Biased, use RFS."]
rfs = rfsModMMC.predict_survival(varList, t = i)[0]
tmp = pd.Series(
[i, pfs, '{:.2f}%'.format(rfs * 100)],
index = ret.columns
)
else:
pfs = pfsModMMC.predict_survival(varList, t = i)[0]
rfs = rfsModMMC.predict_survival(varList, t = i)[0]
tmp = pd.Series(
[i, '{:.2f}%'.format(pfs * 100), '{:.2f}%'.format(rfs * 100)],
index = ret.columns
)
ret = ret.append(tmp, ignore_index = True)
return ret.to_dict('records')
if __name__ == '__main__':
app.run_server(debug = False, host = '0.0.0.0', port = 80)