From d558a2816b24e823f5dfff2a8370f2a42a4bb638 Mon Sep 17 00:00:00 2001 From: Sangam Biradar Date: Mon, 27 Nov 2023 07:08:48 +0530 Subject: [PATCH] Update convert_excel_to_json.py --- convert_excel_to_json.py | 28 ++++++---------------------- 1 file changed, 6 insertions(+), 22 deletions(-) diff --git a/convert_excel_to_json.py b/convert_excel_to_json.py index 03a88e2..c7aa95c 100644 --- a/convert_excel_to_json.py +++ b/convert_excel_to_json.py @@ -1,28 +1,12 @@ +import sys import pandas as pd import json def convert_excel_to_js(excel_path, js_path): - # Read the Excel file - df = pd.read_excel(excel_path) + # Existing logic to convert Excel to JSON and write to JS - # Convert the DataFrame to a list of dictionaries - data_list = df.to_dict(orient='records') +if __name__ == "__main__": + excel_file_path = sys.argv[1] # First argument + js_file_path = sys.argv[2] # Second argument + convert_excel_to_js(excel_file_path, js_file_path) - # Convert the list of dictionaries to a JSON formatted string - json_data = json.dumps(data_list, indent=2) - - # Prepare the content to be written to a JS file - js_content = f"const entries = {json_data};\n" - - # Write the JSON data to a .js file with a JavaScript variable assignment - with open(js_path, 'w') as js_file: - js_file.write(js_content) - - print(f"Data has been written to {js_path}") - -# The paths to the Excel file and the output JS file -excel_file_path = './cloudnativetools.xlsx' # Replace with your actual Excel file path -js_file_path = 'entries.js' # Replace with your desired JS file path - -# Run the conversion -convert_excel_to_js(excel_file_path, js_file_path)