-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkllama.py
91 lines (69 loc) · 3.17 KB
/
kllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Kllama Chat Bot for running open LLMs on local machine
import ollama
import streamlit as st
from datetime import datetime
# App title
st.title("✅🦙 Kllama: Your Local & Private Chatbot💬💪")
# Message with timestamp | NOT Used
def format_message(sender, message, timestamp):
return f"[{timestamp.strftime('%Y-%m-%d %H:%M:%S')}] {sender}: {message}"
# Initialising the chat history
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Clear Chat history
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you?"}]
### App Sidebar Section Starts ###
with st.sidebar:
st.title('✅🦙 Kllama Settings ⚙️')
# Get user settings
user_username = st.sidebar.text_input("Username", "Your Name")
st.sidebar.markdown("---")
## Initialising models
st.subheader('Open LLM Models')
if "model" not in st.session_state:
st.session_state["model"] = ""
## To select a LLM models from a list of available models
models = [model["name"] for model in ollama.list()["models"]]
st.session_state["model"] = st.selectbox("Choose a Model via Ollama Framework", models)
model_chosen = st.session_state["model"]
# The setup for temperature was not built
#st.sidebar.markdown("---")
#st.subheader('Set Model Parameters')
#temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=1, value=0.1, step=0.1)
st.sidebar.markdown("---")
st.subheader('Chat History')
st.sidebar.button('Click to Clear Chat History', on_click=clear_chat_history)
st.sidebar.markdown("---")
st.sidebar.write(f"Logged in as: {user_username}")
st.markdown('📖 Opensource Code and ReadMe available app via this [Github Repo](https://github.com/kunalsuri/kllama/)!')
### App Sidebar Section Ends ###
## Generator funtion to show the generated result of LLMs
def model_result_generator():
stream = ollama.chat(
model=st.session_state["model"],
messages=st.session_state["messages"],
stream=True,
)
for chunk in stream:
yield chunk["message"]["content"]
## Display chat messages from history on app rerun
for message in st.session_state["messages"]:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Show the selected Model
st.write("NOTE: You have selected the following LLM model via the Ollama Framework: " + model_chosen)
# string_dialogue = "You only respond as 'Assistant. You do not pretend to be be a 'User' or respond as 'User'."
## Input for the promt
if prompt_input := st.chat_input("How may I assist you?"):
string_dialogue = ""
prompt = string_dialogue + prompt_input
# add latest message to history in format {role, content}
st.session_state["messages"].append({"role": "user", "content": prompt_input})
# Show the chat history on the page
with st.chat_message("user"):
st.markdown(prompt_input)
with st.chat_message("assistant"):
with st.spinner("Thinking ..."):
message = st.write_stream(model_result_generator())
st.session_state["messages"].append({"role": "assistant", "content": message})