-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlexer.go
340 lines (276 loc) · 8.95 KB
/
lexer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
package scold
import (
"bufio"
"strconv"
"strings"
"unicode"
"unicode/utf8"
)
// ValidIntMaxLen is maximum number of digits a lexeme may have to be
// considered an int
var ValidIntMaxLen = 10
type lexemeType int
// Available lexeme types. The following invariant holds:
// each type is a specialization of all types whose numerical value is less
// than that of self. For example, 42 is a float and is an int, but 42.2 is
// a float but not an int. Hence, int is a specialization of float. A type T
// is a specialization of a type U if any value of type T is of type U also.
//
// The consequence is that between any two types T and U from the list
// there's always a specialization relationship, but in gerenal, this is not
// the case. For example: imagine a lexeme type 'hash' that classifies
// strings of form 2400f9b. The float is not a specialization
// of hash, because 42.2 is not a hash, and likewise the
// hash is not a specialization of float, because 2400f9b is not a float.
const (
STRXM lexemeType = iota
FLOATXM
INTXM
FINALXM
)
// IsIntLexeme returns true if the string represents a signed integer.
// Additionally, it should contain not more than VALID_INT_MAX_LEN digits.
func IsIntLexeme(xm string) bool {
_, err := strconv.Atoi(xm)
return err == nil && len(xm) <= ValidIntMaxLen
}
// IsFloatLexeme returns true if the string represents a floating-point value.
// Although, there can be no floating-point inside of it. A floating-point
// value is of form int_part['.' ('0'-'9')*]
func IsFloatLexeme(xm string) bool {
if xm[0] == '+' || xm[0] == '-' {
xm = xm[1:]
}
parts := strings.Split(xm, ".")
// 123.456.789 and others
if len(parts) > 2 {
return false
}
for _, r := range xm {
if !('0' <= r && r <= '9') && r != '.' {
return false
}
}
return xm != "."
}
// TypeCheckers defines a list type checking functions (TCF).
// The type checker for string is omitted because it always returns true.
// Hence, the index of TCF corresponds to a type of numerical value `index+1`.
var TypeCheckers = []func(string) bool{
IsFloatLexeme,
IsIntLexeme,
}
// MaskGenerators lists all of the mask generating functions (MGF). MGFs are
// defined only for arguments of the same type. I.e., there's no MGF for float
// and int, only for float/float, and int/int. If differnt types must be
// assessed, the MGF of their common type_ must be called. The common type
// between two types T and U exists if specialization relationship between them
// exists and is the least specialized type. The index of MGF in this array
// corresponds to the numerical value of the type of which MGF's arguments are.
var MaskGenerators = []func(*Lexer, string, string) []bool{
(*Lexer).GenMaskForString,
(*Lexer).GenMaskForFloat,
(*Lexer).GenMaskForInt,
}
// IDEA: Add map[string]interface{} for custom configs from outside of library.
// Lexer is a set of settings that control lexeme scanning and comparison.
// And the methods for scanning and comparison are conviniently methods of
// Lexer.
type Lexer struct {
Precision uint
}
// ScanLexemes is a split function for bufio.Scanner. It is same as
// bufio.ScanWords, except that it treats \n character in a special way.
// \n cannot be in any lexeme, except for "\n" itself. Hence, several
// \n\n are parsed as separate lexemes ("\n", "\n").
// It will never return an empty lexeme.
// The definition of other spaces is set by unicode.IsSpace.
func ScanLexemes(data []byte, atEOF bool) (advance int, token []byte, err error) {
// Skip leading spaces.
start := 0
for width := 0; start < len(data); start += width {
var r rune
r, width = utf8.DecodeRune(data[start:])
if r == '\n' || !unicode.IsSpace(r) {
break
}
}
// Scan until space, marking end of word.
for width, i := 0, start; i < len(data); i += width {
var r rune
r, width = utf8.DecodeRune(data[i:])
if r == '\n' {
if i == start {
return i + width, data[start : i+width], nil
}
return i, data[start:i], nil
}
if unicode.IsSpace(r) {
return i + width, data[start:i], nil
}
}
// If we're at EOF, we have a final, non-empty, non-terminated word. Return it.
if atEOF && len(data) > start {
return len(data), data[start:], nil
}
// Request more data.
return start, nil, nil
}
// Scan will break the text into lexemes and return them. A lexeme
// is either a string consisting of non-unicode.IsSpace characters,
// or a single newline character.
// If no lexemes found, nil is returned.
func (l *Lexer) Scan(text string) (xms []string) {
r := strings.NewReader(text)
s := bufio.NewScanner(r)
s.Split(ScanLexemes)
for s.Scan() {
xms = append(xms, s.Text())
}
return
}
// Compare compares target against source and generates colored target's
// lexems highlighting mismatches between them. Additionally, actual
// comparison takes place between two non-LF lexems, and the spurious LFs
// are marked red and skipped. The function is intended to be called twice
// for the two permutations of the arguments to get error highlighting for
// both strings.
func (l *Lexer) Compare(target, source []string) (rts []RichText, ok bool) {
rts = make([]RichText, len(target))
ok = true
ti, si := 0, 0
for ; ti < len(target) && si < len(source); ti, si = ti+1, si+1 {
// Skip spurious LFs
if source[si] != "\n" {
for ti < len(target) && target[ti] == "\n" {
rts[ti].Str = "\n"
rts[ti].Mask = []bool{true}
ok = false
ti++
}
} else if target[ti] != "\n" {
for si < len(source) && source[si] == "\n" {
si++
}
}
if ti == len(target) || si == len(source) {
break
}
xm := target[ti]
rts[ti].Str = xm
rts[ti].Mask = l.GenerateMask(xm, source[si])
if rts[ti].Colorful() {
ok = false
}
}
for ; ti < len(target); ti++ {
rts[ti].Str = target[ti]
rts[ti].Mask = l.GenMaskForString(target[ti], "")
ok = false
}
return
}
// deduceLexemeType will assess the type of the lexeme by sequentially applying
// more and more specialized type checkers starting from the least restrictive
// one.
func deduceLexemeType(xm string) lexemeType {
for i := int(STRXM) + 1; i != int(FINALXM); i++ {
// As any lexeme *is* a string, the function IsStringLexeme is omitted.
if !TypeCheckers[i-1](xm) {
return lexemeType(i - 1)
}
}
return lexemeType(FINALXM - 1)
}
// GenerateMask is a wrapper function that finds the common type of the two
// lexems and generates a color mask for the target based on source.
func (l *Lexer) GenerateMask(target, source string) []bool {
targetType := deduceLexemeType(target)
sourceType := deduceLexemeType(source)
commonType := targetType
if sourceType < commonType {
commonType = sourceType
}
return MaskGenerators[commonType](l, target, source)
}
// GenMaskForString will highlight mismatching characters.
func (l *Lexer) GenMaskForString(target, source string) (mask []bool) {
commonLen := len(target)
if len(source) < commonLen {
commonLen = len(source)
}
mask = make([]bool, len(target))
for i := 0; i < commonLen; i++ {
mask[i] = target[i] != source[i]
}
for i := commonLen; i < len(target); i++ {
mask[i] = true
}
return
}
// GenMaskForInt will highlight the whole number if at least one digit
// is different. Independently, the sign will be highlighted if it's different
// also.
func (l *Lexer) GenMaskForInt(target, source string) (mask []bool) {
mask = make([]bool, len(target))
if target == "" || source == "" {
return
}
if target[0] == '-' && source[0] != '-' || target[0] == '+' && source[0] == '-' {
mask[0] = true
}
targetVal, _ := strconv.Atoi(target)
if targetVal < 0 {
targetVal = -targetVal
}
sourceVal, _ := strconv.Atoi(source)
if sourceVal < 0 {
sourceVal = -sourceVal
}
if targetVal != sourceVal {
for i := range mask {
mask[i] = true
}
}
return
}
// GenMaskForFloat uses the same logic as GenMaskForInt to highlight the
// whole part. If at least one digit in the fractional part (part after the
// dot) is different and its index (zero-based) is less than lexer's
// precision, this digit is highlighted.
func (l *Lexer) GenMaskForFloat(target, source string) (mask []bool) {
targetWhole := strings.Split(target, ".")[0]
sourceWhole := strings.Split(source, ".")[0]
if sourceWhole == "" {
sourceWhole = "0"
}
mask = l.GenMaskForInt(targetWhole, sourceWhole)
if targetWhole == target {
return
}
// dot is never colored
mask = append(mask, false)
// This one is never 0, because of the if up there that returns
targetFracStart := strings.IndexRune(target, '.') + 1
sourceFracStart := strings.IndexRune(source, '.') + 1
if sourceFracStart == 0 {
sourceFracStart = len(source)
}
targetFrac := target[targetFracStart:]
sourceFrac := source[sourceFracStart:]
if len(targetFrac) > len(sourceFrac) {
sourceFrac += strings.Repeat("0", len(targetFrac)-len(sourceFrac))
}
fracMask := make([]bool, len(targetFrac))
equal := true
for i := 0; i < len(targetFrac); i++ {
if targetFrac[i] != sourceFrac[i] {
equal = false
}
if !equal && i < int(l.Precision) {
fracMask[i] = true
}
}
mask = append(mask, fracMask...)
return
}