-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.py
36 lines (28 loc) · 831 Bytes
/
linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from time import time
import numpy as np
from scipy.linalg import fractional_matrix_power, qr
def random_orthonormal(n=512):
H = np.random.randn(n, n).astype('float32')
Q, R = qr(H)
Q = Q @ np.diag(np.sign(np.diag(R)))
return Q
if __name__ == '__main__':
d = 512
basis = np.eye(d)
det = -1
rotation = None
while det < 0:
rotation = random_orthonormal(d)
det = np.linalg.det(rotation)
print(rotation.dot(rotation.T))
print(det)
t0 = time()
rotation = fractional_matrix_power(rotation, 1/16).real
print(time() - t0)
rotation = rotation / np.linalg.norm(rotation, ord=2, axis=1)
det = np.linalg.det(rotation)
print(rotation.dot(rotation.T))
print(det)
dot = np.tensordot(rotation, basis)
angle = np.arccos(dot/d)
print(angle)