-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchipover.py
executable file
·158 lines (141 loc) · 7.45 KB
/
chipover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import glob
import tqdm
from pybedtools import BedTool
from itertools import combinations
import pyranges
from version import __version__
def get_combinations(input_list):
all_combinations = []
for r in range(1, len(input_list) + 1):
for combo in combinations(input_list, r):
all_combinations.append("_".join(combo))
return all_combinations
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=f"ChipOver(ver {__version__}) - Tool for compute common domain structure by overlap enchancers regions detected by LILY",
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-indir", help="Directory with input bed files", type=str,
required=True)
parser.add_argument("-outdir", help="Directory with output bed files", type=str,
required=True)
parser.add_argument("-minoverlap", help="Minimum intersections", type=int,
default=0)
parser.add_argument("-filter_regions", help="File that will be used for filtering results by there regions",
type=str,default="")
parser.add_argument("-tissue_spec", help="if specified we will use only this tissue for analysis",
type=str, default="")
parser.add_argument("-label", help="Additional output label",
type=str, default="")
parser.add_argument("-metadata", help="sample-features csv table", type=str,default="")
parser.add_argument("-verbose", help="Log level: 0 - error, 1 - info, 2 - debug ", type=int,default=1)
args = parser.parse_args()
input_files = glob.glob(args.indir + '/*.bed')
PyRangesObjects = {}
domain_counts={}
metadata = pd.read_csv(args.metadata)
metadata['filename'] = metadata['Peaks'].apply(os.path.basename)
if args.tissue_spec != "":
metadata = metadata[metadata['Tissue'] == args.tissue_spec]
for i in ['SampleID','Tissue','Condition']:
if i not in metadata.columns:
raise RuntimeError(f'column {i} expected in metadata file {args.metadata}')
computed_domains = get_combinations(list(set(metadata['Condition'].to_list())))
computed_labels = ['SE','enhancer','promoter']
filter_bed = None
if len(args.filter_regions) > 0:
filter_bed = pyranges.read_bed(args.filter_regions)
allowed_files = list(set(metadata['filename'].to_list()))
if args.verbose > 0:
print(f"Input directory:{args.indir}")
print(f"Output directory:{args.outdir}")
print(f"We use:")
print(f"\tTissues and tissues combinations:{computed_domains}")
print(f"\tRegion labels:{computed_labels}")
print(f"\tBed files:{allowed_files}")
print(f"\tMinimum regions per domain:{args.minoverlap+1}")
if len(args.filter_regions) > 0:
print(f"\tFilter_regions file:{args.filter_regions}")
if len(args.label) > 0:
print(f"\tLabel:{args.label}")
for f in tqdm.tqdm(input_files, desc="Read files and construct PyRanges objects",disable= args.verbose!=1):
if os.path.basename(f) not in allowed_files:
continue
rdf = pyranges.read_bed(f).df
rdf['Tissue'] = metadata[metadata['filename']==os.path.basename(f)]['Tissue'].values[0]
rdf['Condition'] = metadata[metadata['filename'] == os.path.basename(f)]['Condition'].values[0]
rdf['SampleID'] = metadata[metadata['filename'] == os.path.basename(f)]['SampleID'].values[0]
rdf['Samples'] = None
rdf['Conditions'] = None
rdf['Genes'] = None
#rdf['Treatment'] = metadata[metadata['filename'] == os.path.basename(f)]['Treatment'].values[0]
PyRangesObjects[f] = pyranges.PyRanges(rdf)
stat = {}
for f, bo in tqdm.tqdm(PyRangesObjects.items(), desc=f"Compute statistics for all input samples",
disable= args.verbose != 1 ):
sample_id = metadata[metadata['filename'] == os.path.basename(f)]['SampleID'].values[0]
stat_label = {}
for label in computed_labels:
if isinstance(label, str):
bo_filtered = pyranges.PyRanges(bo.df[bo.df['Name'] == label])
elif isinstance(label, list):
bo_filtered = pyranges.PyRanges(bo.df[bo.df['Name'].isin(label)])
else:
raise RuntimeError(f"Incorrect type of label {type(label)}")
if isinstance(label, str):
label_str = label
elif isinstance(label, list):
label_str = "+".join(label)
stat_label[label_str] = bo_filtered.__len__()
stat[sample_id] = stat_label
stat_df = pd.DataFrame(stat)
stats_table_file_name = "stats.csv"
pd.DataFrame(stat_df).to_csv(os.path.join(args.outdir, stats_table_file_name))
PyRangeAll = None
for f,obj in PyRangesObjects.items():
if PyRangeAll is None:
PyRangeAll = obj
else:
PyRangeAll = pyranges.PyRanges(pd.concat([PyRangeAll.df,obj.df]))
PyRangeAllPatients = PyRangeAll #pyranges.PyRanges(PyRangeAll.df[PyRangeAll.df['Tissue'] == 'patient'])
PyRangeSE = pyranges.PyRanges(PyRangeAll.df[PyRangeAll.df['Name'] == 'SE'])
domain_counts = {}
for label in computed_labels:
common_domains = {}
if isinstance(label, str):
bo_filtered = pyranges.PyRanges(PyRangeAllPatients.df[PyRangeAllPatients.df['Name'] == label])
elif isinstance(label, list):
bo_filtered = pyranges.PyRanges(PyRangeAllPatients.df[PyRangeAllPatients.df['Name'].isin(label)])
else:
raise RuntimeError(f"Incorrect type of label {type(label)}")
for cd in computed_domains:
allowed_tissue = cd.split('_')
common_domains[cd] = None
bo_for_overlap = pyranges.PyRanges(bo_filtered.df[bo_filtered.df['Condition'].isin(allowed_tissue)])
bo_for_exclude = pyranges.PyRanges(bo_filtered.df[~bo_filtered.df['Condition'].isin(allowed_tissue)])
common_domains[cd] = bo_for_overlap.merge(count=True)
if len(allowed_tissue) > 1:
for one_of_allowed_tissue in allowed_tissue:
bo_for_intersect = pyranges.PyRanges(bo_filtered.df[bo_filtered.df['Condition'].isin([one_of_allowed_tissue])])
common_domains[cd] = common_domains[cd].intersect(bo_for_intersect, how='first', invert=False)
common_domains[cd] = common_domains[cd].intersect(bo_for_exclude, how='first', invert=True)
common_domains[cd] = pyranges.PyRanges(common_domains[cd].df[common_domains[cd].df['Count'] > args.minoverlap ])
if filter_bed is not None:
common_domains[cd] = common_domains[cd].intersect(filter_bed, how='first', invert=False)
if isinstance(label, str):
label_str = label
elif isinstance(label, list):
label_str = "+".join(label)
outfilename = f"{label_str}-{cd}.bed"
common_domains[cd].to_bed(path=os.path.join(args.outdir, outfilename),keep=True)
if label_str not in domain_counts:
domain_counts[label_str] = {}
domain_counts[label_str][cd] = common_domains[cd].__len__()
counts_table_file_name = "counts.csv"
pd.DataFrame(domain_counts).to_csv(os.path.join(args.outdir, counts_table_file_name))
#print(PyRangeAll)