-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathtransforms.py
243 lines (193 loc) · 6.88 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import cv2
import torch
import random
import librosa
import numpy as np
from src.random_resized_crop import RandomResizedCrop
cv2.setNumThreads(0)
def image_crop(image, bbox):
return image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
def gauss_noise(image, sigma_sq):
h, w = image.shape
gauss = np.random.normal(0, sigma_sq, (h, w))
gauss = gauss.reshape(h, w)
image = image + gauss
return image
# Source: https://www.kaggle.com/davids1992/specaugment-quick-implementation
def spec_augment(spec: np.ndarray,
num_mask=2,
freq_masking=0.15,
time_masking=0.20,
value=0):
spec = spec.copy()
num_mask = random.randint(1, num_mask)
for i in range(num_mask):
all_freqs_num, all_frames_num = spec.shape
freq_percentage = random.uniform(0.0, freq_masking)
num_freqs_to_mask = int(freq_percentage * all_freqs_num)
f0 = np.random.uniform(low=0.0, high=all_freqs_num - num_freqs_to_mask)
f0 = int(f0)
spec[f0:f0 + num_freqs_to_mask, :] = value
time_percentage = random.uniform(0.0, time_masking)
num_frames_to_mask = int(time_percentage * all_frames_num)
t0 = np.random.uniform(low=0.0, high=all_frames_num - num_frames_to_mask)
t0 = int(t0)
spec[:, t0:t0 + num_frames_to_mask] = value
return spec
class SpecAugment:
def __init__(self,
num_mask=2,
freq_masking=0.15,
time_masking=0.20):
self.num_mask = num_mask
self.freq_masking = freq_masking
self.time_masking = time_masking
def __call__(self, image):
return spec_augment(image,
self.num_mask,
self.freq_masking,
self.time_masking,
image.min())
class Compose:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, trg=None):
if trg is None:
for t in self.transforms:
image = t(image)
return image
else:
for t in self.transforms:
image, trg = t(image, trg)
return image, trg
class UseWithProb:
def __init__(self, transform, prob=.5):
self.transform = transform
self.prob = prob
def __call__(self, image, trg=None):
if trg is None:
if random.random() < self.prob:
image = self.transform(image)
return image
else:
if random.random() < self.prob:
image, trg = self.transform(image, trg)
return image, trg
class OneOf:
def __init__(self, transforms, p=None):
self.transforms = transforms
self.p = p
def __call__(self, image, trg=None):
transform = np.random.choice(self.transforms, p=self.p)
if trg is None:
image = transform(image)
return image
else:
image, trg = transform(image, trg)
return image, trg
class Flip:
def __init__(self, flip_code):
assert flip_code == 0 or flip_code == 1
self.flip_code = flip_code
def __call__(self, image):
image = cv2.flip(image, self.flip_code)
return image
class HorizontalFlip(Flip):
def __init__(self):
super().__init__(1)
class VerticalFlip(Flip):
def __init__(self):
super().__init__(0)
class GaussNoise:
def __init__(self, sigma_sq):
self.sigma_sq = sigma_sq
def __call__(self, image):
if self.sigma_sq > 0.0:
image = gauss_noise(image,
np.random.uniform(0, self.sigma_sq))
return image
class RandomGaussianBlur:
'''Apply Gaussian blur with random kernel size
Args:
max_ksize (int): maximal size of a kernel to apply, should be odd
sigma_x (int): Standard deviation
'''
def __init__(self, max_ksize=5, sigma_x=20):
assert max_ksize % 2 == 1, "max_ksize should be odd"
self.max_ksize = max_ksize // 2 + 1
self.sigma_x = sigma_x
def __call__(self, image):
kernel_size = tuple(2 * np.random.randint(0, self.max_ksize, 2) + 1)
blured_image = cv2.GaussianBlur(image, kernel_size, self.sigma_x)
return blured_image
class ImageToTensor:
def __call__(self, image):
delta = librosa.feature.delta(image)
accelerate = librosa.feature.delta(image, order=2)
image = np.stack([image, delta, accelerate], axis=0)
image = image.astype(np.float32) / 100
image = torch.from_numpy(image)
return image
class RandomCrop:
def __init__(self, size):
self.size = size
def __call__(self, signal):
start = random.randint(0, signal.shape[1] - self.size)
return signal[:, start: start + self.size]
class CenterCrop:
def __init__(self, size):
self.size = size
def __call__(self, signal):
if signal.shape[1] > self.size:
start = (signal.shape[1] - self.size) // 2
return signal[:, start: start + self.size]
else:
return signal
class PadToSize:
def __init__(self, size, mode='constant'):
assert mode in ['constant', 'wrap']
self.size = size
self.mode = mode
def __call__(self, signal):
if signal.shape[1] < self.size:
padding = self.size - signal.shape[1]
offset = padding // 2
pad_width = ((0, 0), (offset, padding - offset))
if self.mode == 'constant':
signal = np.pad(signal, pad_width,
'constant', constant_values=signal.min())
else:
signal = np.pad(signal, pad_width, 'wrap')
return signal
def get_transforms(train, size,
wrap_pad_prob=0.5,
resize_scale=(0.8, 1.0),
resize_ratio=(1.7, 2.3),
resize_prob=0.33,
spec_num_mask=2,
spec_freq_masking=0.15,
spec_time_masking=0.20,
spec_prob=0.5):
if train:
transforms = Compose([
OneOf([
PadToSize(size, mode='wrap'),
PadToSize(size, mode='constant'),
], p=[wrap_pad_prob, 1 - wrap_pad_prob]),
RandomCrop(size),
UseWithProb(
RandomResizedCrop(scale=resize_scale, ratio=resize_ratio),
prob=resize_prob
),
UseWithProb(SpecAugment(num_mask=spec_num_mask,
freq_masking=spec_freq_masking,
time_masking=spec_time_masking), spec_prob),
ImageToTensor()
])
else:
transforms = Compose([
PadToSize(size),
CenterCrop(size),
ImageToTensor()
])
return transforms