-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain_folds.py
90 lines (75 loc) · 3.05 KB
/
train_folds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
import json
import argus
from argus.callbacks import MonitorCheckpoint, EarlyStopping, LoggingToFile
from torch.utils.data import DataLoader
from src.dataset import SaltDataset
from src.transforms import SimpleDepthTransform, SaltTransform
from src.lr_scheduler import ReduceLROnPlateau
from src.argus_models import SaltMetaModel
from src.losses import LovaszProbLoss
from src import config
EXPERIMENT_NAME = 'mos-fpn-lovasz-se-resnext50-001'
BATCH_SIZE = 24
IMAGE_SIZE = (128, 128)
OUTPUT_SIZE = (101, 101)
TRAIN_FOLDS_PATH = '/workdir/data/train_folds_148_mos_emb_1.csv'
SAVE_DIR = f'/workdir/data/experiments/{EXPERIMENT_NAME}'
FOLDS = list(range(config.N_FOLDS))
PARAMS = {
'nn_module': ('SeResnextFPNProb50', {
'num_classes': 1,
'num_channels': 3,
'final': 'logits',
'dropout_2d': 0.2,
'skip_dropout': True,
'fpn_layers': [8, 16, 32, 64, 128]
}),
'loss': ('LovaszProbLoss', {
'lovasz_weight': 0.75,
'prob_weight': 0.25,
}),
'prediction_transform': ('ProbOutputTransform', {
'segm_thresh': 0.0,
'prob_thresh': 0.5,
}),
'optimizer': ('SGD', {'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.0001}),
'device': 'cuda'
}
def train_fold(save_dir, train_folds, val_folds):
depth_trns = SimpleDepthTransform()
train_trns = SaltTransform(IMAGE_SIZE, True, 'crop')
val_trns = SaltTransform(IMAGE_SIZE, False, 'crop')
train_dataset = SaltDataset(TRAIN_FOLDS_PATH, train_folds, train_trns, depth_trns)
val_dataset = SaltDataset(TRAIN_FOLDS_PATH, val_folds, val_trns, depth_trns)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True,
drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4)
model = SaltMetaModel(PARAMS)
callbacks = [
MonitorCheckpoint(save_dir, monitor='val_crop_iout', max_saves=3, copy_last=False),
EarlyStopping(monitor='val_crop_iout', patience=100),
ReduceLROnPlateau(monitor='val_crop_iout', patience=30, factor=0.64, min_lr=1e-8),
LoggingToFile(os.path.join(save_dir, 'log.txt')),
]
model.fit(train_loader,
val_loader=val_loader,
max_epochs=700,
callbacks=callbacks,
metrics=['crop_iout'])
if __name__ == "__main__":
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR)
else:
print(f"Folder {SAVE_DIR} already exists.")
with open(os.path.join(SAVE_DIR, 'source.py'), 'w') as outfile:
outfile.write(open(__file__).read())
with open(os.path.join(SAVE_DIR, 'params.json'), 'w') as outfile:
json.dump(PARAMS, outfile)
for i in range(len(FOLDS)):
val_folds = [FOLDS[i]]
train_folds = FOLDS[:i] + FOLDS[i + 1:]
save_fold_dir = os.path.join(SAVE_DIR, f'fold_{FOLDS[i]}')
print(f"Val folds: {val_folds}, Train folds: {train_folds}")
print(f"Fold save dir {save_fold_dir}")
train_fold(save_fold_dir, train_folds, val_folds)