-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathframe_statistics.py
150 lines (130 loc) · 6.22 KB
/
frame_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import copy
import time
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
import numpy as np
import math
import matplotlib.pyplot as plt
import cv2
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from typing import Tuple, Union
from antispoofing import AntiSpoofing, AntiSpoofingCosine
from landmarker import Landmarker
from face_detector import FaseDetector
from typing import Tuple
ModelResult = Tuple[int, str, float]
def postprocess_prediction(raw_predition: float, threshold: float) -> ModelResult:
"""
Convert float value to an int-encoded label with threshold
:param raw_predition:
:return: 1 if input is REAL, 0 otherwise
"""
return (1, 'Real', raw_predition) if (raw_predition > threshold) else (0, 'Fake', raw_predition)
if __name__ == '__main__':
###
print('Face detector initialization ...')
face_detector_init_time = time.time()
landmarker = Landmarker('face_landmarker.task')
face_detector = FaseDetector('blaze_face_short_range.tflite')
print(f'Detector initialized in {round(time.time() - face_detector_init_time, 4)} sec')
###
print('Models for Spoofing detection initialization ...')
model_init_time = time.time()
model_small = AntiSpoofing('models/model_224.onnx', 0.1, (224, 224))
model_big = AntiSpoofing('models/model_900.onnx', 0.2, (900, 900))
model_dolls = AntiSpoofing('models/model_doll_224.onnx', 0.98, (224, 224))
model_cosine = AntiSpoofingCosine(model_path='models/model_cosine_224.onnx', image_size=(224, 224))
print(f'Models initialized in {round(time.time() - model_init_time, 4)} sec')
###
# Забираем видео из видео потока
# cap = cv2.VideoCapture('IMG_3728.MOV')
# Забираем видео с мобильного телефона
# cap = cv2.VideoCapture('http://172.16.74.154:8080/video', cv2.CAP_ANY)
# cap.set(3, 900)
# cap.set(4, 900)
# Забираем видео с web камеры
web_cam_screen_size = (800, 600)
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
cap.set(3, web_cam_screen_size[0])
cap.set(4, web_cam_screen_size[0])
###
frames = 0
fps = 0
frame_time = time.time()
frame_time_in_sec = 0
while cap.isOpened():
###
frame_time = time.time() - frame_time
frame_time_in_sec = frame_time_in_sec + frame_time
frames += 1
if frame_time_in_sec > 1:
frame_time_in_sec = 0
fps = frames
frames = 0
if fps != 0:
print(f'fps = {fps} Frame performing time = {str(int(frame_time * 1000))} ms')
frame_time = time.time()
###
ret, frame = cap.read()
original_frame = frame.copy()
print(f'Frame_size = {frame.shape}')
# frame = cv2.resize(frame, (900, 900))
annotated_image = frame
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=frame)
detection_result = landmarker.detector.detect(image)
# print_color is in BGR notation
if detection_result.face_landmarks:
###
tensor = model_small.load_single_image(original_frame, is_center_crop=True)
result = model_small.run_model(tensor)
post_processed_result = postprocess_prediction(result, model_small.threshold)
print(('Small:', post_processed_result))
###
tensor = model_big.load_single_image(original_frame, is_center_crop=True)
result = model_big.run_model(tensor)
post_processed_result_for_big_tensor = postprocess_prediction(result, model_big.threshold)
print(('Big: ', post_processed_result_for_big_tensor))
###
tensor = model_cosine.load_single_image(original_frame, is_center_crop=True)
result = model_cosine.run_model(tensor)
result_for_cosine, result_for_cosine_as_text = model_cosine.postprocess_prediction_as_text(result)
print(('Cosine: ', result))
###
tensor = model_dolls.load_single_image(original_frame, is_center_crop=True)
result = model_dolls.run_model(tensor)
post_processed_result_for_dolls = postprocess_prediction(result, model_dolls.threshold)
print(('Doll: ', post_processed_result_for_dolls))
###
if post_processed_result[0] and post_processed_result_for_big_tensor[0] and result_for_cosine:
print_color = (0, 255, 0)
elif post_processed_result[0] or post_processed_result_for_big_tensor[0] or result_for_cosine:
print_color = (0, 255, 255)
else:
print_color = (0, 0, 255)
cv2.putText(frame, f'Small = {post_processed_result[1]}', (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, print_color, 2, cv2.LINE_AA)
cv2.putText(frame, f'Big = {post_processed_result_for_big_tensor[1]}', (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, print_color, 2,
cv2.LINE_AA)
cv2.putText(frame, f'Cosine = {result_for_cosine_as_text}', (50, 110), cv2.FONT_HERSHEY_SIMPLEX,
1, print_color, 2,
cv2.LINE_AA)
cv2.putText(frame, f'Doll = {post_processed_result_for_dolls[1]}', (50, 140), cv2.FONT_HERSHEY_SIMPLEX, 1, print_color, 2,
cv2.LINE_AA)
cv2.rectangle(frame, (0, 0), web_cam_screen_size, color=print_color, thickness=30)
face_detection_result_bool = 0
face_detection_result = face_detector.face_detector.detect(image)
image_copy = np.copy(image.numpy_view())
annotated_image = landmarker.draw_landmarks_on_image(image.numpy_view(), detection_result)
if post_processed_result[0]:
print(f'Face is {post_processed_result[1]} with confidence {post_processed_result[2]}')
else:
print(f'Face is {post_processed_result[1]} with confidence {1-post_processed_result[2]}')
horizontal_line = cv2.hconcat([annotated_image, frame])
cv2.imshow("Camera", horizontal_line)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
cv2.waitKey(0)
cap.release()
cv2.destroyAllWindows()