forked from ghorn/mathlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspatial_rotations.c
175 lines (151 loc) · 4.62 KB
/
spatial_rotations.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
* This file is part of mathlib.
*
* Copyright (C) 2010-2011 Greg Horn <ghorn@stanford.edu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* spatial_rotations.c
* Math library spatial rotation related operations.
*/
#include <math.h>
#include "spatial_rotations.h"
/************** library functions *****************/
void
rotate_xyz_about_x( xyz_t * b, const xyz_t * const a, const double rot_angle)
{
double cos_theta = cos(rot_angle);
double sin_theta = sin(rot_angle);
b->x = a->x;
b->y = a->y*cos_theta + a->z*sin_theta;
b->z = -a->y*sin_theta + a->z*cos_theta;
}
void
euler321_of_quat(euler_t *e, const quat_t * const q)
{
double r11 = q->q0*q->q0 + q->q1*q->q1 - q->q2*q->q2 - q->q3*q->q3;
double r12 = 2.0*(q->q1*q->q2 + q->q0*q->q3);
double mr13 = -2.0*(q->q1*q->q3 - q->q0*q->q2);
double r23 = 2.0*(q->q2*q->q3 + q->q0*q->q1);
double r33 = q->q0*q->q0 - q->q1*q->q1 - q->q2*q->q2 + q->q3*q->q3;
e->yaw = atan2( r12, r11 );
if (mr13 > 1.0) mr13 = 1.0; // nan protect
else if (mr13 < -1.0) mr13 = -1.0;
e->pitch = asin( mr13 );
e->roll = atan2( r23, r33 );
}
void
quat_of_dcm_a2b(quat_t * q, const double * const R)
{
euler_t e;
euler321_of_dcm( &e, R);
quat_of_euler321( q, &e);
}
void
quat_of_dcm_b2a(quat_t * q, const double * const R)
{
quat_of_dcm_a2b(q, R);
quat_inv(q, q);
}
void
euler321_of_dcm(euler_t *e, const double * const R)
{
double r11 = R[0];
double r12 = R[1];
double mr13 = -R[2];
double r23 = R[5];
double r33 = R[8];
e->yaw = atan2( r12, r11 );
if (mr13 > 1.0) mr13 = 1.0; // nan protect
else if (mr13 < -1.0) mr13 = -1.0;
e->pitch = asin( mr13 );
e->roll = atan2( r23, r33 );
}
void
quat_of_euler321(quat_t * q, const euler_t * const e)
{
double sr2 = sin(0.5*e->roll);
double cr2 = cos(0.5*e->roll);
double sp2 = sin(0.5*e->pitch);
double cp2 = cos(0.5*e->pitch);
double sy2 = sin(0.5*e->yaw);
double cy2 = cos(0.5*e->yaw);
q->q0 = cr2*cp2*cy2 + sr2*sp2*sy2;
q->q1 = sr2*cp2*cy2 - cr2*sp2*sy2;
q->q2 = cr2*sp2*cy2 + sr2*cp2*sy2;
q->q3 = cr2*cp2*sy2 - sr2*sp2*cy2;
if (q->q0 < 0){
q->q0 = -q->q0;
q->q1 = -q->q1;
q->q2 = -q->q2;
q->q3 = -q->q3;
}
quat_normalize(q);
}
void
dcm_of_quat_a2b(double *R_a2b, const quat_t * const q_a2b)
{
// 1st column
R_a2b[0] = q_a2b->q0*q_a2b->q0 + q_a2b->q1*q_a2b->q1 - q_a2b->q2*q_a2b->q2 - q_a2b->q3*q_a2b->q3;
R_a2b[3] = 2*(q_a2b->q1*q_a2b->q2 - q_a2b->q0*q_a2b->q3);
R_a2b[6] = 2*(q_a2b->q1*q_a2b->q3 + q_a2b->q0*q_a2b->q2);
// 2nd column
R_a2b[1] = 2*(q_a2b->q1*q_a2b->q2 + q_a2b->q0*q_a2b->q3);
R_a2b[4] = q_a2b->q0*q_a2b->q0 - q_a2b->q1*q_a2b->q1 + q_a2b->q2*q_a2b->q2 - q_a2b->q3*q_a2b->q3;
R_a2b[7] = 2*(q_a2b->q2*q_a2b->q3 - q_a2b->q0*q_a2b->q1);
// 3rd column
R_a2b[2] = 2*(q_a2b->q1*q_a2b->q3 - q_a2b->q0*q_a2b->q2);
R_a2b[5] = 2*(q_a2b->q2*q_a2b->q3 + q_a2b->q0*q_a2b->q1);
R_a2b[8] = q_a2b->q0*q_a2b->q0 - q_a2b->q1*q_a2b->q1 - q_a2b->q2*q_a2b->q2 + q_a2b->q3*q_a2b->q3;
}
void
dcm_of_quat_b2a(double *R_b2a, const quat_t * const q_a2b)
{
quat_t q_b2a;
q_b2a.q0 = q_a2b->q0;
q_b2a.q1 = -q_a2b->q1;
q_b2a.q2 = -q_a2b->q2;
q_b2a.q3 = -q_a2b->q3;
dcm_of_quat_a2b(R_b2a, &q_b2a);
}
// vec_b = R_a2b * vec_a
void
rot_vec_by_dcm_a2b(xyz_t *vec_b, const double * const R_a2b, const xyz_t * const vec_a)
{
xyz_mult_3x3_by_xyz( vec_b, R_a2b, vec_a );
}
// vec_a = R_a2b^T * vec_b
void
rot_vec_by_dcm_b2a(xyz_t *vec_a, const double * const R_a2b, const xyz_t * const vec_b)
{
xyz_mult_3x3_transpose_by_xyz( vec_a, R_a2b, vec_b );
}
/* vec_b = q_a2b * vec_a * q_a2b^(-1) */
/* vec_b = R(q_a2b) * vec_a */
void
rot_vec_by_quat_a2b(xyz_t *vec_b, const quat_t * const q_a2b, const xyz_t * const vec_a)
{
double R_a2b[9];
dcm_of_quat_a2b(R_a2b,q_a2b);
rot_vec_by_dcm_a2b(vec_b, R_a2b, vec_a);
}
void
rot_vec_by_quat_b2a(xyz_t *vec_a, const quat_t * const q_a2b, const xyz_t * const vec_b)
{
double R_a2b[9];
dcm_of_quat_a2b(R_a2b,q_a2b);
rot_vec_by_dcm_b2a(vec_a, R_a2b, vec_b);
}