-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_tokenizer.py
81 lines (66 loc) · 3.16 KB
/
train_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from argparse import ArgumentParser
from pathlib import Path
from numpy import random
from transformers import AutoTokenizer
from lassl import MODEL_TYPE_TO_PREDEFINED_MODEL
from lassl.utils import batch_iterator, load_corpora
CACHE_DIR = str(Path(__file__).parent.resolve() / ".cache")
def get_args():
parser = ArgumentParser()
data_arguments = parser.add_argument_group("data")
data_arguments.add_argument("--corpora_dirpath", type=str, required=True)
data_arguments.add_argument(
"--corpus_type", choices=["docu_text", "docu_json", "sent_text", "sent_json"], type=str, default="docu_json"
)
data_arguments.add_argument("--batch_size", type=int, default=1000)
data_arguments.add_argument("--sampling_ratio", type=int, default=0.01)
data_arguments.add_argument("--seed", type=int, default=42)
data_arguments.add_argument("--output_base_dirpath", type=str, default="tokenizers")
model_arguments = parser.add_argument_group("model")
model_arguments.add_argument(
"--model_type",
choices=["bert-cased", "gpt2", "roberta", "albert", "bart", "t5", "ul2"],
type=str,
required=True,
)
model_arguments.add_argument("--vocab_size", type=int, default=51200)
model_arguments.add_argument("--min_frequency", type=int, default=2)
model_arguments.add_argument("--additional_special_tokens", nargs="*", type=str, default=None)
args = parser.parse_args()
return args
def main():
args = get_args()
random.seed(args.seed)
corpora = load_corpora(dirpath=args.corpora_dirpath, corpus_type=args.corpus_type, cache_dir=CACHE_DIR)
assert args.sampling_ratio > 0, "sampling_ratio must be greater than 0."
if 0 < args.sampling_ratio < 1.0:
total_size = len(corpora)
sample_size = int(total_size * args.sampling_ratio)
corpora = corpora.select(indices=random.choice(total_size, sample_size, replace=False))
else:
print("Since sampling_ratio >= 1.0, all corpora will be used.")
tokenizer = AutoTokenizer.from_pretrained(MODEL_TYPE_TO_PREDEFINED_MODEL[args.model_type])
data_iterator = batch_iterator(corpora, batch_size=args.batch_size)
if args.additional_special_tokens:
print(f"Additional Special Tokens : {args.additional_special_tokens}")
assert len(args.additional_special_tokens) == len(
set(args.additional_special_tokens)
), "Each additional special tokens must be unique."
assert not set(tokenizer.all_special_tokens).intersection(
set(args.additional_special_tokens)
), "Each additional special tokens are not of default special tokens from tokenizer."
tokenizer = tokenizer.train_new_from_iterator(
data_iterator,
vocab_size=args.vocab_size,
min_frequency=args.min_frequency,
new_special_tokens=args.additional_special_tokens,
)
else:
tokenizer = tokenizer.train_new_from_iterator(
data_iterator,
vocab_size=args.vocab_size,
min_frequency=args.min_frequency,
)
tokenizer.save_pretrained(f"{args.output_base_dirpath}/{args.model_type}")
if __name__ == "__main__":
main()