-
Notifications
You must be signed in to change notification settings - Fork 5
/
ppo.py
414 lines (347 loc) · 18.8 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import copy
import itertools
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from aitraineree import DEVICE
from aitraineree.agents import AgentBase
from aitraineree.agents.agent_utils import compute_gae, normalize, revert_norm_returns
from aitraineree.buffers.buffer_factory import BufferFactory
from aitraineree.buffers.rollout import RolloutBuffer
from aitraineree.loggers import DataLogger
from aitraineree.networks.bodies import ActorBody
from aitraineree.policies import MultivariateGaussianPolicy, MultivariateGaussianPolicySimple
from aitraineree.types import ActionType, AgentState, BufferState, NetworkState
from aitraineree.types.dataspace import DataSpace
from aitraineree.types.experience import Experience
from aitraineree.utils import to_numbers_seq, to_tensor
class PPOAgent(AgentBase):
"""
Proximal Policy Optimization (PPO) [1] is an online policy gradient method
that could be considered as an implementation-wise simplified version of
the Trust Region Policy Optimization (TRPO).
[1] "Proximal Policy Optimization Algorithms" (2017) by J. Schulman, F. Wolski,
P. Dhariwal, A. Radford, O. Klimov. https://arxiv.org/abs/1707.06347
"""
model = "PPO"
logger = logging.getLogger("PPO")
def __init__(self, obs_space: DataSpace, action_space: DataSpace, **kwargs):
"""
Parameters:
obs_space (DataSpace): Dataspace describing the input.
action_space (DataSpace): Dataspace describing the output.
Keyword arguments:
hidden_layers (tuple of ints): Shape of the hidden layers in fully connected network. Default: (128, 128).
is_discrete (bool): Whether return discrete action. Default: False.
using_kl_div (bool): Whether to use KL divergence in loss. Default: False.
using_gae (bool): Whether to use General Advantage Estimator. Default: True.
gae_lambda (float): Value of lambda in GAE. Default: 0.96.
actor_lr (float): Learning rate for the actor (policy). Default: 0.0003.
critic_lr (float): Learning rate for the critic (value function). Default: 0.001.
gamma (float): Discount value. Default: 0.99.
ppo_ratio_clip (float): Policy ratio clipping value. Default: 0.25.
num_epochs (int): Number of time to learn from samples. Default: 1.
rollout_length (int): Number of actions to take before update. Default: 48.
batch_size (int): Number of samples used in learning. Default: `rollout_length`.
actor_number_updates (int): Number of times policy losses are propagated. Default: 10.
critic_number_updates (int): Number of times value losses are propagated. Default: 10.
entropy_weight (float): Weight of the entropy term in the loss. Default: 0.005.
max_grad_norm_actor (float) Maximum norm value for actor gradient. Default: 100.
max_grad_norm_critic (float): Maximum norm value for critic gradient. Default: 100.
"""
super().__init__(**kwargs)
self.device = self._register_param(kwargs, "device", DEVICE, update=True) # Default device is CUDA if available
self.obs_space = obs_space
self.action_space = action_space
assert len(action_space.shape) == 1, "Only 1D actions are supported"
self.action_size = action_space.shape[0]
self._config["obs_space"] = self.obs_space
self._config["action_space"] = self.action_space
self.hidden_layers = to_numbers_seq(self._register_param(kwargs, "hidden_layers", (128, 128)))
self.iteration = 0
self.is_discrete = bool(self._register_param(kwargs, "is_discrete", False))
self.using_gae = bool(self._register_param(kwargs, "using_gae", True))
self.gae_lambda = float(self._register_param(kwargs, "gae_lambda", 0.96))
self.actor_lr = float(self._register_param(kwargs, "actor_lr", 3e-4))
self.critic_lr = float(self._register_param(kwargs, "critic_lr", 1e-3))
self.gamma = float(self._register_param(kwargs, "gamma", 0.99))
self.ppo_ratio_clip = float(self._register_param(kwargs, "ppo_ratio_clip", 0.25))
self.using_kl_div = bool(self._register_param(kwargs, "using_kl_div", False))
self.kl_beta = float(self._register_param(kwargs, "kl_beta", 0.1))
self.target_kl = float(self._register_param(kwargs, "target_kl", 0.01))
self.kl_div = float("inf")
self.num_workers = int(self._register_param(kwargs, "num_workers", 1))
self.num_epochs = int(self._register_param(kwargs, "num_epochs", 1))
self.rollout_length = int(self._register_param(kwargs, "rollout_length", 48)) # "Much shorter than episode"
self.batch_size = int(self._register_param(kwargs, "batch_size", self.rollout_length))
self.actor_number_updates = int(self._register_param(kwargs, "actor_number_updates", 10))
self.critic_number_updates = int(self._register_param(kwargs, "critic_number_updates", 10))
self.entropy_loss_weight = float(self._register_param(kwargs, "entropy_loss_weight", 0.5))
self.max_grad_norm_actor = float(self._register_param(kwargs, "max_grad_norm_actor", 100.0))
self.max_grad_norm_critic = float(self._register_param(kwargs, "max_grad_norm_critic", 100.0))
if kwargs.get("simple_policy", False):
self.policy = MultivariateGaussianPolicySimple(self.action_size, **kwargs)
else:
self.policy = MultivariateGaussianPolicy(self.action_size, device=self.device)
self.buffer = RolloutBuffer(batch_size=self.batch_size, buffer_size=self.rollout_length)
self.actor = ActorBody(
self.obs_space.shape,
(self.policy.param_dim * self.action_size,),
gate_out=torch.tanh,
hidden_layers=self.hidden_layers,
device=self.device,
)
self.critic = ActorBody(
self.obs_space.shape, (1,), gate_out=nn.Identity(), hidden_layers=self.hidden_layers, device=self.device
)
self.actor_params = list(self.actor.parameters()) + list(self.policy.parameters())
self.critic_params = list(self.critic.parameters())
self.actor_opt = optim.Adam(self.actor_params, lr=self.actor_lr)
self.critic_opt = optim.Adam(self.critic_params, lr=self.critic_lr)
self._loss_actor = float("nan")
self._loss_critic = float("nan")
self._metrics: dict[str, float] = {}
@property
def loss(self) -> dict[str, float]:
return {"actor": self._loss_actor, "critic": self._loss_critic}
@loss.setter
def loss(self, value):
if isinstance(value, dict):
self._loss_actor = value["actor"]
self._loss_critic = value["critic"]
else:
self._loss_actor = value
self._loss_critic = value
def __eq__(self, o: object) -> bool:
return (
super().__eq__(o)
and isinstance(o, type(self))
and self._config == o._config
and self.buffer == o.buffer
and self.get_network_state() == o.get_network_state() # TODO @dawid: Currently net isn't compared properly
)
def __clear_memory(self):
self.buffer.clear()
@torch.no_grad()
def act(self, experience: Experience, noise: float = 0.0) -> Experience:
"""Acting on the observations. Returns action.
Parameters:
experience (Experience): current state
noise (float): epsilon, for epsilon-greedy action selection
Returns:
Experience updated with action taken.
"""
actions: list[ActionType] = []
logprobs = []
values = []
t_obs = to_tensor(experience.obs).view((self.num_workers,) + self.obs_space.shape).float().to(self.device)
for worker in range(self.num_workers):
actor_est = self.actor.act(t_obs[worker].unsqueeze(0))
assert not torch.any(torch.isnan(actor_est))
action = self.policy(actor_est)
value = self.critic.act(t_obs[worker].unsqueeze(0)) # Shape: (1, 1)
logprob = self.policy.log_prob(action) # Shape: (1,)
values.append(value)
logprobs.append(logprob)
if self.is_discrete: # *Technically* it's the max of Softmax but that's monotonic.
action = int(torch.argmax(action))
else:
action = action.cpu().numpy().flatten().tolist()
actions.append(action)
value = torch.cat(values)
logprob = torch.stack(logprobs)
action = actions if self.num_workers > 1 else actions[0]
experience.update(action=action, value=torch.cat(values), logprob=torch.stack(logprobs))
return experience
def step(self, experience: Experience) -> None:
"""Step agent's internal learning mechanisms.
Updates buffer with currenct experience and increments learning counter.
When the learning counter hits `rollout_length` when we commence learning session.
The learning counter isn't updated when the agent is in `test` mode.
"""
if not self.train:
return
self.iteration += 1
self.buffer.add(
obs=torch.tensor(experience.obs).reshape((self.num_workers,) + self.obs_space.shape).float(),
action=torch.tensor(experience.action).reshape((self.num_workers,) + self.action_space.shape).float(),
reward=torch.tensor(experience.reward).reshape(self.num_workers, 1),
done=torch.tensor(experience.done).reshape(self.num_workers, 1),
logprob=experience.get("logprob").reshape(self.num_workers, 1),
value=experience.get("value").reshape(self.num_workers, 1),
)
if self.iteration % self.rollout_length == 0:
self.train_agent()
self.__clear_memory()
def train_agent(self):
"""
Main loop that initiates the training.
"""
experiences = self.buffer.all_samples()
rewards = to_tensor(experiences["reward"]).to(self.device)
dones = to_tensor(experiences["done"]).type(torch.int).to(self.device)
obss = to_tensor(experiences["obs"]).to(self.device)
actions = to_tensor(experiences["action"]).to(self.device)
values = to_tensor(experiences["value"]).to(self.device)
logprobs = to_tensor(experiences["logprob"]).to(self.device)
assert rewards.shape == dones.shape == values.shape == logprobs.shape
assert (
obss.shape == (self.rollout_length, self.num_workers) + self.obs_space.shape
), f"Wrong obss shape: {obss.shape}"
assert (
actions.shape == (self.rollout_length, self.num_workers) + self.action_space.shape
), f"Wrong action shape: {actions.shape}"
with torch.no_grad():
if self.using_gae:
next_value = self.critic.act(obss[-1])
advantages = compute_gae(rewards, dones, values, next_value, self.gamma, self.gae_lambda)
advantages = normalize(advantages)
returns = advantages + values
# returns = normalize(advantages + values)
assert advantages.shape == returns.shape == values.shape
else:
returns = revert_norm_returns(rewards, dones, self.gamma)
returns = returns.float()
advantages = normalize(returns - values)
assert advantages.shape == returns.shape == values.shape
for _ in range(self.num_epochs):
idx = 0
self.kl_div = 0
while idx < self.rollout_length:
_states = obss[idx : idx + self.batch_size].view((-1,) + self.obs_space.shape).detach()
_actions = actions[idx : idx + self.batch_size].view((-1,) + self.action_space.shape).detach()
_logprobs = logprobs[idx : idx + self.batch_size].view(-1, 1).detach()
_returns = returns[idx : idx + self.batch_size].view(-1, 1).detach()
_advantages = advantages[idx : idx + self.batch_size].view(-1, 1).detach()
idx += self.batch_size
self.learn((_states, _actions, _logprobs, _returns, _advantages))
self.kl_div = abs(self.kl_div) / (
self.actor_number_updates * self.num_workers * self.rollout_length / self.batch_size
)
if self.using_kl_div:
if self.kl_div > self.target_kl * 1.5:
self.kl_beta = min(1.5 * self.kl_beta, 1e2) # Max 100
elif self.kl_div < self.target_kl / 1.5:
self.kl_beta = max(0.75 * self.kl_beta, 1e-6) # Min 0.000001
if self.kl_div > self.target_kl * 1.5:
self.logger.warning("Early stopping")
break
self._metrics["policy/kl_beta"] = self.kl_beta
def compute_policy_loss(self, samples):
obss, actions, old_log_probs, _, advantages = samples
actor_est = self.actor(obss)
_ = self.policy(actor_est)
dist = self.policy._last_dist
entropy = dist.entropy().reshape(actor_est.shape[:-1] + (1,))
new_log_probs = self.policy.log_prob(actions).reshape(old_log_probs.shape)
assert new_log_probs.shape == old_log_probs.shape
r_theta = (new_log_probs - old_log_probs).exp()
r_theta_clip = torch.clamp(r_theta, 1.0 - self.ppo_ratio_clip, 1.0 + self.ppo_ratio_clip)
assert r_theta.shape == r_theta_clip.shape
# KL = E[log(P/Q)] = sum_{P}( P * log(P/Q) ) -- \approx --> avg_{P}( log(P) - log(Q) )
approx_kl_div = (old_log_probs - new_log_probs).mean().item()
if self.using_kl_div:
# Ratio threshold for updates is 1.75 (although it should be configurable)
policy_loss = -torch.mean(r_theta * advantages) + self.kl_beta * approx_kl_div
else:
joint_theta_adv = torch.stack((r_theta * advantages, r_theta_clip * advantages))
assert joint_theta_adv.shape[0] == 2
policy_loss = -torch.amin(joint_theta_adv, dim=0).mean()
entropy_loss = -self.entropy_loss_weight * entropy.mean()
loss = policy_loss + entropy_loss
self._metrics["policy/kl_div"] = approx_kl_div
self._metrics["policy/policy_ratio"] = float(r_theta.mean())
self._metrics["policy/policy_ratio_clip_mean"] = float(r_theta_clip.mean())
return loss, approx_kl_div
def compute_value_loss(self, samples):
obss, _, _, returns, _ = samples
values = self.critic(obss)
self._metrics["value/value_mean"] = values.mean()
self._metrics["value/value_std"] = values.std()
return F.mse_loss(values, returns)
def learn(self, samples):
self._loss_actor = 0.0
for actor_iter in range(self.actor_number_updates):
self.actor_opt.zero_grad()
loss_actor, kl_div = self.compute_policy_loss(samples)
self.kl_div += kl_div
if kl_div > 1.5 * self.target_kl:
# Early break
self.logger.warning(
"Early break after %i iterations. %f > %f", actor_iter, kl_div, 1.5 * self.target_kl
)
break
loss_actor.backward()
nn.utils.clip_grad_norm_(self.actor_params, self.max_grad_norm_actor)
self.actor_opt.step()
self._loss_actor = loss_actor.item()
for _ in range(self.critic_number_updates):
self.critic_opt.zero_grad()
loss_critic = self.compute_value_loss(samples)
loss_critic.backward()
nn.utils.clip_grad_norm_(self.critic_params, self.max_grad_norm_critic)
self.critic_opt.step()
self._loss_critic = float(loss_critic.item())
def log_metrics(self, data_logger: DataLogger, step: int, full_log: bool = False):
data_logger.log_value("loss/actor", self._loss_actor, step)
data_logger.log_value("loss/critic", self._loss_critic, step)
for metric_name, metric_value in self._metrics.items():
data_logger.log_value(metric_name, metric_value, step)
policy_params = {str(i): v for i, v in enumerate(itertools.chain.from_iterable(self.policy.parameters()))}
data_logger.log_values_dict("policy/param", policy_params, step)
if full_log:
for idx, layer in enumerate(self.actor.layers):
if hasattr(layer, "weight"):
data_logger.create_histogram(f"actor/layer_weights_{idx}", layer.weight, step)
if hasattr(layer, "bias") and layer.bias is not None:
data_logger.create_histogram(f"actor/layer_bias_{idx}", layer.bias, step)
for idx, layer in enumerate(self.critic.layers):
if hasattr(layer, "weight"):
data_logger.create_histogram(f"critic/layer_weights_{idx}", layer.weight, step)
if hasattr(layer, "bias") and layer.bias is not None:
data_logger.create_histogram(f"critic/layer_bias_{idx}", layer.bias, step)
def get_state(self) -> AgentState:
return AgentState(
model=self.model,
obs_space=self.obs_space,
action_space=self.action_space,
config=self._config,
buffer=copy.deepcopy(self.buffer.get_state()),
network=copy.deepcopy(self.get_network_state()),
)
def get_network_state(self) -> NetworkState:
return NetworkState(
net=dict(
policy=self.policy.state_dict(),
actor=self.actor.state_dict(),
critic=self.critic.state_dict(),
)
)
def set_buffer(self, buffer_state: BufferState) -> None:
self.buffer = BufferFactory.from_state(buffer_state)
def set_network(self, network_state: NetworkState) -> None:
self.policy.load_state_dict(network_state.net["policy"])
self.actor.load_state_dict(network_state.net["actor"])
self.critic.load_state_dict(network_state.net["critic"])
@staticmethod
def from_state(state: AgentState) -> AgentBase:
config = copy.copy(state.config)
config.update({"obs_space": state.obs_space, "action_space": state.action_space})
agent = PPOAgent(**config)
if state.network is not None:
agent.set_network(state.network)
if state.buffer is not None:
agent.set_buffer(state.buffer)
return agent
def save_state(self, path: str):
agent_state = self.get_state()
torch.save(agent_state, path)
def load_state(self, path: str):
agent_state = torch.load(path)
self._config = agent_state.get("config", {})
self.__dict__.update(**self._config)
self.policy.load_state_dict(agent_state["policy"])
self.actor.load_state_dict(agent_state["actor"])
self.critic.load_state_dict(agent_state["critic"])