-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathchatbot.py
433 lines (373 loc) · 17.1 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
""" 微信机器人类。"""
import queue
import re
import os
import time
from typing import Tuple
from functools import partial
import cv2
from wcferry import WxMsg
from wcf_wrapper import WcfWrapper
import config
import common
from common import ContentType, ChatMsg
import openai_wrapper
import preset
from tools import toolbase
import live_tools
class Chatbot():
""" 管理微信机器人逻辑. 管理与微信客户端 (如Wechat Ferry) 和 AI 客户端 (如 OpenAI )的交互逻辑 """
def __init__(self, config: config.Config, wcfw: WcfWrapper, oaiw: openai_wrapper.OpenAIWrapper) -> None:
""" 初始化
args:
config (Config): Config对象
wcfw (WcfWrapper): Wechat Ferry Wrapper对象
oaiw (OpenAIWrapper): AI Wrapper对象
"""
self.config = config
self.wcfw = wcfw
self.openai_wrapper = oaiw
self.chat_presets:dict[str, preset.Preset] = {} # 每个对话的预设 {roomid或wxid: 预设}
# 读取config中的对话预设
if self.config.group_presets:
for k,bili_rid in self.config.group_presets.items():
res = self.set_preset(k, bili_rid)
if res:
common.logger().info("加载群聊预设: %s,%s -> %s", k, self.wcfw.wxid_to_nickname(k), bili_rid)
else:
common.logger().warning("无法为群聊加载预设: %s,%s -> %s", k, self.wcfw.wxid_to_nickname(k), bili_rid)
# 直播通知工具
self.live_tools = live_tools.LiveMonitor(self.config.live_tools, self.wcfw)
def start_main_loop(self) -> None:
"""
主循环, 接收并处理微信消息.
该函数阻塞进程.
"""
while self.wcfw.wcf.is_receiving_msg():
try:
msg:WxMsg = self.wcfw.get_msg()
note = f"收到消息 {self.wcfw.msg_preview_str(msg)}"
common.logger().info(note)
except queue.Empty:
time.sleep(0.001)
continue # 无消息,继续
except Exception as e:
common.logger().error("接收微信消息错误: %s", common.error_trace(e))
try:
self.run_wxmsg(msg)
except Exception as e:
common.logger().error("处理消息错误:%s", common.error_trace(e))
def run_wxmsg(self, msg:WxMsg):
""" 读取并处理一条消息
args:
msg (WxMsg): 消息对象. 群号: msg.roomid, 发送者微信ID: msg.sender, 消息内容: msg.content
"""
content = self._filter_preprocess_wxmsg(msg)
if content is None:
return
# 确定回复对象
if msg.from_group():
receiver = msg.roomid
nickname = self.wcfw.wcf.get_chatroom_members(msg.roomid).get(msg.sender, "")
if msg.from_self():
at_list = ""
else:
at_list = msg.sender
else: #单聊
receiver = msg.sender
nickname = self.wcfw.wxid_to_nickname(msg.sender)
at_list = ""
# 发送者是管理员, 并且是命令时, 处理命令并直接返回
if self.wcfw.wxid_to_wxcode(msg.sender) in self.config.admins:
cmd = self._match_admin_cmd(content)
if cmd:
try:
self.process_admin_cmd(content, receiver, at_list)
except Exception as e:
common.logger().error("执行管理员命令错误: %s",common.error_trace(e))
self.wcfw.send_text(f"执行管理员命令'{content}'发生错误", receiver, at_list)
return
# 根据预设加上格式
preset = self.chat_presets.get(receiver, self.config.default_preset)
code_or_id = self.wcfw.wxid_to_wxcode(msg.sender)
if not code_or_id:
code_or_id = msg.sender
text = preset.construct_msg(content, code_or_id, nickname)
### 调用 AI 处理消息
# 回调函数, 处理 AI 返回消息
def callback_msg(msg:ChatMsg) -> int:
return self.wcfw.send_message(msg, receiver, at_list)
try:
# 获取引用消息及附件
images = []
files = []
refer_msg = self.wcfw.get_refer_content(msg)
if refer_msg: # 无引用内容
match refer_msg.type: # 根据引用类型处理
case ContentType.text:
# 引用文本
text = text + f"\n-----\n消息附带文本:{refer_msg.content})"
case ContentType.link:
# 引用链接
text = text + f"\n-----\n消息附带链接:{refer_msg.content})"
case ContentType.image:
# 图片
images.append(refer_msg.content)
case ContentType.file | ContentType.voice:
# 文件,语音
files.append(refer_msg.content)
# text += f"\n(语音文件: {refer_msg.content})"
# self.openai_wrapper.run_audio_msg(receiver, text, refer_msg.content, callback_msg)
case ContentType.video:
# 视频
instructions, images = self.preprocess_video(refer_msg.content)
text += instructions
# self.openai_wrapper.run_video_msg(receiver, text, refer_msg.content, callback_msg)
case ContentType.ERROR:
# 处理错误
text += "\n-----\n(无法获取引用的消息)"
case _:
# 其他
# tp == WxMsgType.UNSUPPORTED
text += "\n-----\n(暂时不支持引用该类型消息)"
# 调用 OpenAI 运行消息 (阻塞直到全部消息处理结束)
self.openai_wrapper.run_msg(receiver, text, images, files, callback_msg)
except Exception as e:
common.logger().error("响应消息时发生错误: %s", common.error_trace(e))
self.wcfw.send_text(f"对不起, 响应该消息时发生错误: {common.error_info(e)}", receiver, at_list)
def _filter_preprocess_wxmsg(self, msg:WxMsg) -> str:
""" 判断是否响应这条消息
如果响应, 返回消息原文(去掉前缀)
如果忽略, 返回None
"""
# 过滤消息类型
if msg.type == 1: # 文本
pass
elif msg.type == 34: # 语音
pass
elif msg.type == 49: # 引用/文件/链接? 进一步看content type
ct = self.wcfw.get_content_type(msg)
if ct == 57: # 引用
pass
else:
return None
else:
return None
# return None
def voice_msg_trans(msgid:str):
''' 转录语音消息,得到文字'''
audiofile = self.wcfw.wcf.get_audio_msg(msgid, common.temp_dir())
text = self.openai_wrapper.audio_trans(audiofile)
common.logger().info("语音消息转录得到文字:%s", text)
return text
# 过滤消息内容
text_msg = self.wcfw.get_msg_text(msg).strip()
if msg.from_group(): #群聊消息
# 白名单过滤
if "$all" in self.config.group_whitelist:
pass
else:
if msg.roomid not in self.config.group_whitelist:
return None
# 群组语音消息
if msg.type == 34:
if self.config.group_voice_msg:
return voice_msg_trans(msg.id)
else:
return None
# 群组中来自自己的消息, 如果有prefix开头, 去掉prefix; 否则忽略
if msg.from_self() :
for p in self.config.self_prefix:
if text_msg.startswith(p):
text_msg = text_msg.removeprefix(p).strip()
return text_msg
return None
# @我的消息, 处理
if self.wcfw.is_msg_at_me(msg):
#去掉@前缀, 获得消息正文
# 正则匹配: @开头 + 任意字符 + \u2005(1/4空格)或任意空白或结尾
text_msg = re.sub(r"@.*?([\u2005\s]|$)", "", text_msg).strip()
return text_msg
else: # 其他情况, 忽略
return None
else: #单聊消息
# 微信号白名单过滤
wxcode = self.wcfw.wxid_to_wxcode(msg.sender)
if "$all" in self.config.single_chat_whitelist:
pass
else:
if wxcode in self.config.single_chat_whitelist:
pass
else:
return None
#来自自己的消息, 如果有prefix开头, 去掉prefix; 否则忽略
if msg.from_self() :
for p in self.config.self_prefix:
if text_msg.startswith(p):
text_msg = text_msg.removeprefix(p).strip()
return text_msg
return None
# 来自对方消息:
if not self.config.single_chat_prefix: # 未定义前缀: 响应所有
if msg.type == 34: # 语音
return voice_msg_trans(msg.id)
else:
return text_msg
else:
for p in self.config.single_chat_prefix: # 已定义前缀: 只响应前缀开头的消息
if text_msg.startswith(p):
return text_msg.removeprefix(p).strip()
return None
return None
def _match_admin_cmd(self, content:str) -> Tuple[str, config.AdminCmd]:
"""
判断消息是否是管理员命令
args:
content (str): 消息文本
returns:
(str, AdminCmd): (命令, 命令枚举类型) 如果不是命令返回None
返回消息对应的管理员命令, 如果没有则返回None"""
for k,v in self.config.admin_cmds.items():
if content.startswith(k):
return (k, v)
return None
def process_admin_cmd(self, content:str, receiver:str, at_list:str) -> bool:
""" 处理管理员命令
args:
content (str): 命令原文
receiver (str): 结果发送给
at_list (str): 结果at_list
returns:
bool: 是否成功处理命令
"""
# 找到对应命令
cmd_str, cmd_enum = self._match_admin_cmd(content)
# 处理命令
log_msg = None
wx_msg = None
if cmd_enum is None:
return False
elif cmd_enum == config.AdminCmd.help: # 显示帮助
log_msg = "显示帮助信息"
wx_msg = self.help_msg(receiver)
elif cmd_enum == config.AdminCmd.reload_config: # 重新加载config
self.config.load_config()
self.openai_wrapper.load_config()
log_msg = "已完成命令:重新加载配置"
wx_msg = log_msg
elif cmd_enum == config.AdminCmd.clear_chat: # 清除记忆
self.openai_wrapper.clear_chat_thread(receiver)
log_msg = "已完成命令: 清除当前对话记忆"
wx_msg = log_msg
elif cmd_enum == config.AdminCmd.load_preset: # 为当前对话加载预设
args = content.removeprefix(cmd_str).strip() #获得命令参数
res = self.set_preset(receiver, args)
if res:
log_msg = f"已完成命令: 加载预设{args}"
else:
log_msg = f"无法加载预设{args}"
wx_msg = log_msg
elif cmd_enum == config.AdminCmd.reset_preset: # 为当前对话重置预设
self.chat_presets.pop(receiver, None)
self.openai_wrapper.clear_chat_prompt(receiver) #删除对应的对话预设
log_msg = "已完成重置预设"
wx_msg = log_msg
elif cmd_enum == config.AdminCmd.list_preset: # 预设列表
log_msg = "列出可用预设"
wx_msg = preset.list_preset()
elif cmd_enum == config.AdminCmd.chat_id: # 显示当前对话的id
log_msg = f"当前对话id: {receiver}"
wx_msg = log_msg
elif cmd_enum == config.AdminCmd.test_msg: # 发送测试卡片消息
log_msg = "发送测试卡片消息"
self.wcfw.send_test_msg(receiver)
else:
log_msg = f"未实现命令:{content}({cmd_enum.name})"
wx_msg = log_msg
if log_msg:
common.logger().info(log_msg)
if wx_msg:
self.wcfw.send_text(wx_msg, receiver, at_list)
return True
def set_preset(self, chatid:str, pr_name:str) -> bool:
""" 为对话chatid设置预设pr
args:
chatid (str): 对话id
pr_name (str): 预设名字
returns:
bool: 是否成功设置预设
"""
pr = preset.read_preset(pr_name)
if not pr:
return False
self.chat_presets[chatid] = pr
self.openai_wrapper.set_chat_prompt(chatid, pr.sys_prompt)
return True
def help_msg(self, chatid:str) -> str:
""" 返回帮助信息文本
args:
chatid (str): 对话id
returns:
str: 帮助信息文本
"""
msgs = []
msgs.append("\n# 帮助信息")
msgs.append(f"默认模型: {self.config.OPENAI['chat_model']}")
msgs.append(f"是否响应群聊语音消息: {'是' if self.config.group_voice_msg else '否'}")
txt = str(self.config.single_chat_prefix) if self.config.single_chat_prefix else "(无需前缀)"
msgs.append(f"单聊触发前缀: {txt}")
pr = self.chat_presets.get(chatid, self.config.default_preset)
msgs.append(f"当前对话使用预设: {pr.name}")
# msgs.append("")
msgs.append("## 管理员命令:")
for k,v in self.config.admin_cmds.items():
msgs.append(f"{k} {v.description}")
msgs.append("## 已启用工具:")
msgs.append(self.openai_wrapper.tools_help())
text = '\n'.join(msgs)
return text
def preprocess_video(self, video_file:str) -> tuple[str, list]:
""" 预处理视频文件, 返回指示文本和图片列表
args:
video_file (str): 视频文件路径
returns:
(str, list): (指示文本, 图片列表)
"""
# extract n_frames from video
# pylint: disable=no-member
frames = []
cap = cv2.VideoCapture(video_file)
# backend = cap.getBackendName()
# common.logger().info("backend = %s", backend)
if not cap.isOpened():
common.logger().warning("错误:%s", cap.get(cv2.CAP_PROP_FOURCC))
# 获取 cap 打开文件时的错误信息
raise RuntimeError("无法打开视频文件(可能还没有下载完,请稍候再试)")
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
# 截图数量:最多每秒1张,总数限制MAX_FRAMES
MAX_FRAMES = 8
duration = frame_count / fps
n_frames = min(frame_count, int(duration), MAX_FRAMES)
# print(f"frame_count={frame_count}, fps={fps}, duration={duration:.2f}")
for i in range(n_frames):
cap.set(cv2.CAP_PROP_POS_FRAMES, i * frame_count / n_frames)
ret, frame = cap.read()
if ret:
frames.append(frame)
else:
raise RuntimeError("Unable to read frame")
cap.release()
# 在video_file同一目录,把每个frame写到临时文件,命名为 video_file_0.jpg, video_file_1.jpg, ...
image_files = []
for i, frame in enumerate(frames):
image_file = f"{os.path.splitext(video_file)[0]}_frame_{i}.jpg"
cv2.imwrite(image_file, frame)
image_files.append(image_file)
instructions = "\n-----\n额外指示:请假装你可以查看视频,请根据附带提供的视频截图分析视频内容。" \
f"视频的长度是{duration:.2f}秒,这里从视频中以固定时间间隔截取帧了{n_frames}帧截图。" \
"你要假扮作你看到的是一个完整的视频。请把视频作为一个整体分析,不要提及你看到的是单帧截图。"
return instructions, image_files
# 测试
if __name__ == "__main__":
pass