-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_iSEE_intro.Rmd
138 lines (104 loc) · 5.99 KB
/
05_iSEE_intro.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# iSEE introduction
Instructor: Leo
## Toy RSE data
```{r}
## Lets build a simple SummarizedExperiment object following information
## from the documentation
library("SummarizedExperiment")
## ?SummarizedExperiment
## Adapted from the official documentation:
## First we create the data pieces that we'll use to build our
## SummarizedExperiment object. In this case, we'll have 200 genes
## measured in 6 samples.
nrows <- 200
ncols <- 6
## Let's make up some count numbers at random
set.seed(20210223)
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
## Then some basic infomratino for our genes
rowRanges <- GRanges(
rep(c("chr1", "chr2"), c(50, 150)),
IRanges(floor(runif(200, 1e5, 1e6)), width = 100),
strand = sample(c("+", "-"), 200, TRUE),
feature_id = sprintf("ID%03d", 1:200)
)
names(rowRanges) <- paste0("gene_", seq_len(length(rowRanges)))
## Next, we create some information about samples
colData <- DataFrame(
Treatment = rep(c("ChIP", "Input"), 3),
row.names = LETTERS[1:6]
)
## Finally we put all these pieces together in a single R object
rse <- SummarizedExperiment(
assays = SimpleList(counts = counts),
rowRanges = rowRanges,
colData = colData
)
## Overview
rse
```
## iSEE
How can you make plots from `SummarizedExperiment` objects without having to
write any code? The answer is with `iSEE` 🎨
* http://bioconductor.org/packages/iSEE
* http://bioconductor.org/packages/release/bioc/vignettes/iSEE/inst/doc/basic.html
```{r isee_basic, eval = FALSE}
## Let's explore the `rse` object interactively
library("iSEE")
iSEE::iSEE(rse)
```
## Exercise with data from spatialLIBD
* We'll download a `SingleCellExperiment` object, which is similar to `SummarizedExperiment` as it extends it.
- http://bioconductor.org/packages/SingleCellExperiment
- http://bioconductor.org/packages/spatialLIBD
- https://doi.org/10.1038/s41593-020-00787-0
- https://osca.bioconductor.org/
- https://www.nature.com/articles/s41592-019-0654-x Figures 2 and 3
```{r download_sce_layer}
## Lets get some data using spatialLIBD
sce_layer <- spatialLIBD::fetch_data("sce_layer")
sce_layer
## We can check how big the object is with lobstr
lobstr::obj_size(sce_layer)
```
* Just like with our `rse` object, we can use `iSEE::iSEE()` to explore the data.
```{r explore_sce_layer, eval = FALSE}
iSEE::iSEE(sce_layer)
```
<style>
p.exercise {
background-color: #E4EDE2;
padding: 9px;
border: 1px solid black;
border-radius: 10px;
font-family: sans-serif;
}
</style>
<p class="exercise">
**Exercise 1**:
Create a plot and download a PDF that reproduces as closely as possible the plot on the right side of the following slide.
</p>
<script async class="speakerdeck-embed" data-slide="10" data-id="329db23f5f17460da31f45c7695a9f06" data-ratio="1.33333333333333" src="//speakerdeck.com/assets/embed.js"></script>
<p class="exercise">
**Exercise 2**:
Explore with a _heatmap_ the expression of the genes `MOBP`, `MBP`, and `PCP4`. If we use _clustering_ (group genes based on similar expression patterns), which two genes are most similar to each other?
</p>
<p class="exercise">
**Exercise 3**:
In which dorsolateral prefrontal cortex (DLPFC) layers (`L1`, `L2`, ..., `L6` grey matter layers, and `WM` for _white matter_) do we see the highest expression for the genes _MOBP_ and _MBP_?
</p>
This list of ENSEMBL IDs will be useful:
```
ENSG00000168314
ENSG00000183036
ENSG00000197971
```
## Community
`iSEE` authors:
* Kévin Rue-Albrecht https://twitter.com/KevinRUE67
* Federico Marini https://twitter.com/FedeBioinfo
* Charlotte Soneson https://twitter.com/CSoneson
* Aaron Lun https://twitter.com/realAaronLun
* Another example exploring data with `SummarizedExperiment` and `iSEE`:
<blockquote class="twitter-tweet"><p lang="en" dir="ltr">Today we explored RNA-seq data from <a href="https://twitter.com/StefanoBerto83?ref_src=twsrc%5Etfw">@StefanoBerto83</a> et al who made it easy to re-use. Thank you! ^^<a href="https://twitter.com/lcolladotor?ref_src=twsrc%5Etfw">@lcolladotor</a> used <a href="https://twitter.com/hashtag/shiny?src=hash&ref_src=twsrc%5Etfw">#shiny</a> + <a href="https://twitter.com/hashtag/ggpubr?src=hash&ref_src=twsrc%5Etfw">#ggpubr</a> as well as <a href="https://twitter.com/hashtag/iSEE?src=hash&ref_src=twsrc%5Etfw">#iSEE</a><br><br>📔 <a href="https://t.co/iUQHE0xqRc">https://t.co/iUQHE0xqRc</a><br>🗞️ <a href="https://t.co/qhAdXbhY9c">https://t.co/qhAdXbhY9c</a><a href="https://twitter.com/hashtag/rstats?src=hash&ref_src=twsrc%5Etfw">#rstats</a> <a href="https://twitter.com/Bioconductor?ref_src=twsrc%5Etfw">@Bioconductor</a><a href="https://t.co/OXTukByhoo">https://t.co/OXTukByhoo</a></p>— LIBD rstats club (@LIBDrstats) <a href="https://twitter.com/LIBDrstats/status/1360349352250789890?ref_src=twsrc%5Etfw">February 12, 2021</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
<blockquote class="twitter-tweet"><p lang="en" dir="ltr">Are you making a heatmap to 👀 gene expression? Have you wondered whether to center &scale the data?<br><br>I made this 5 min video to help answer these ❓<br><br>Shoutout to <a href="https://twitter.com/hashtag/iSEE?src=hash&ref_src=twsrc%5Etfw">#iSEE</a> by <a href="https://twitter.com/KevinRUE67?ref_src=twsrc%5Etfw">@KevinRUE67</a> <a href="https://twitter.com/FedeBioinfo?ref_src=twsrc%5Etfw">@FedeBioinfo</a> <a href="https://twitter.com/CSoneson?ref_src=twsrc%5Etfw">@CSoneson</a> et al <a href="https://twitter.com/hashtag/rstats?src=hash&ref_src=twsrc%5Etfw">#rstats</a> <a href="https://twitter.com/Bioconductor?ref_src=twsrc%5Etfw">@Bioconductor</a><a href="https://twitter.com/LieberInstitute?ref_src=twsrc%5Etfw">@LieberInstitute</a> <a href="https://t.co/KwQHLODTQV">https://t.co/KwQHLODTQV</a></p>— 🇲🇽 Leonardo Collado-Torres (@lcolladotor) <a href="https://twitter.com/lcolladotor/status/1598456517216595968?ref_src=twsrc%5Etfw">December 1, 2022</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>