-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmscoco.py
105 lines (89 loc) · 4.33 KB
/
mscoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from typing import Tuple, List, Text, Dict, Any, Iterator, Union, Sized, Callable
import sys
sys.path.append("/usr/local/Cellar/opencv3/3.2.0/lib/python3.5/site-packages/") # mac opencv path
import cv2
import skimage.io as io
import numpy as np
from chainer.iterators import MultiprocessIterator, SerialIterator
from chainer.dataset.dataset_mixin import DatasetMixin
from imgaug import augmenters as iaa
sys.path.append("./coco/PythonAPI/")
from pycocotools.coco import COCO
from pycocotools import mask
class CamVid(DatasetMixin):
def __init__(self, coco: COCO, path: str, seq: iaa.Sequential, resize_shape: Tuple[int, int]=None, dice_coef: bool=False):
self.resize_shape = resize_shape
self.coco = coco
self.infos = coco.loadImgs(coco.getImgIds(catIds=coco.getCatIds(catNms=['person']))) # type: List[dict]
self.seq = seq
self.seq_norm = iaa.Sequential([
iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)
]) # type: iaa.Sequential
self.dice_coef = dice_coef
self.path = path
def __len__(self) -> int:
return len(self.infos)
def get_example(self, i) -> Tuple[np.ndarray, np.ndarray]:
info = self.infos[i]
img, mask = self.load_img(info)
if self.seq != None:
# image data augumantation
img = np.expand_dims(img, axis=0)
mask = np.expand_dims(mask, axis=0)
img = self.seq.augment_images(img)
img = self.seq_norm.augment_images(img)
mask = self.seq.augment_images(mask)
img = np.squeeze(img)
mask = np.squeeze(mask)
if self.resize_shape != None:
img = cv2.resize(img, self.resize_shape)
mask = cv2.resize(mask, self.resize_shape)
if self.dice_coef:
mask = mask > 0
else:
mask[:,:,0] = mask[:,:,0] > 0
return (img, mask)
def load_img(self, imgInfo: dict) -> Tuple[np.ndarray, np.ndarray]:
#img = io.imread(imgInfo['coco_url'])
img = io.imread(self.path + imgInfo['file_name'])
if img.ndim != 3:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
anns = self.coco.loadAnns(self.coco.getAnnIds(imgIds=[imgInfo['id']],iscrowd=False)) # type: List[dict]
if self.dice_coef:
mask_human = np.zeros((img.shape[0], img.shape[1]), np.uint8)
else:
mask_human = np.zeros((img.shape[0], img.shape[1], 2), np.uint8)
# mask_human: probability image mask
for ann in anns:
cat = self.coco.loadCats([ann["category_id"]])[0]
if cat["name" ] != "person": continue
rles = mask.frPyObjects(ann["segmentation"], img.shape[0], img.shape[1]) # type: List[dict]
for i, rle in enumerate(rles):
mask_img = mask.decode(rle) # type: np.ndarraya
if self.dice_coef:
mask_human += mask_img
else:
mask_human[:,:,0] += mask_img
return (img, mask_human)
def get_iter(resize_shape: Tuple[int, int]=None, dice_coef: bool =False, workdir="./", data_aug: bool=False) -> DatasetMixin:
coco_train = COCO(workdir+"annotations/instances_train2014.json") # type: COCO
coco_val = COCO(workdir+"annotations/instances_val2014.json") # type: COCO
if data_aug:
seq = iaa.Sequential([
iaa.Fliplr(0.5),
iaa.Affine(
scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axis
translate_px={"x": (-16, 16), "y": (-16, 16)}, # translate by -16 to +16 pixels (per axis)
rotate=(-45, 45), # rotate by -45 to +45 degrees
shear=(-16, 16), # shear by -16 to +16 degrees
#order=iaa.ALL, # use any of scikit-image's interpolation methods
#cval=(0, 255), # if mode is constant, use a cval between 0 and 255
#mode="wrap" # use any of scikit-image's warping modes (see 2nd image from the top for examples)
),
]).to_deterministic() # type: iaa.Sequential
else:
seq = iaa.Sequential([]).to_deterministic()
return (
CamVid(coco_train, workdir+"train2014/", seq, resize_shape, dice_coef),
CamVid(coco_val, workdir+"val2014/", seq, resize_shape, dice_coef)
)