-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscraper_google.py
328 lines (257 loc) · 12 KB
/
scraper_google.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#!/usr/bin/env python3
from bs4 import BeautifulSoup as bs
from pprint import pprint
from const import *
import converters
import requests
import json
import re
"""
Part of this code is based on Dniamir's work https://github.com/dniamir/GoogleWeather.
And another part was made possible because of Andrej Kesely answer on https://stackoverflow.com/questions/68071846/how-can-i-extract-text-from-inside-a-svg-with-beaultifulsoup/68072190#68072190.
"""
def _get_soup(url):
"""This functions simply gets the header and url, creates a session and
generates the "soup" to pass to the other functions.
Args:
header (dict): The header parameters to be used in the session.
url (string): The url address to create the session.
Returns:
bs4.BeautifulSoup: The BeautifoulSoup object.
"""
# Try to read data from URL, if it fails, return None
try:
session = requests.Session()
session.headers["User-Agent"] = GOOGLE_HEADER["User-Agent"]
session.headers["Accept-Language"] = GOOGLE_HEADER["Language"]
session.headers["Content-Language"] = GOOGLE_HEADER["Language"]
html = session.get(url)
return bs(html.text, "html.parser")
except:
print(f"ERROR: Unable to retrieve data from {url}")
return None
def _get_weather_now(soup, output_units):
"""Gets the current weather conditions.
Args:
soup (bs4.BeautifulSoup): The BeautifoulSoup object.
output_units (dict): A dictionary contatining "temp" key, which can be
"c" for Celsius or "f" for Farenheit and a "speed"
key, which can be "km/h" for Kilometers Per Hour
or "mph" for Miles Per Hour.
Returns:
dict: A dictionary containing the current "Temperature", "Datetime",
"Weather Condition", "Precipitation Probability", "Humidity"
and "Wind Speed".
"""
# Create a dictionary to store the output data
data = dict()
# Get the region output from Google
region = soup.find("div", attrs={"id": "wob_loc"}).text
# Get Weather Data
data["temp"] = float(soup.find("span", attrs={"id": "wob_tm"}).text)
data["datetime"] = soup.find("div", attrs={"id": "wob_dts"}).text
data["weather"] = soup.find("span", attrs={"id": "wob_dc"}).text
data["precip_prob"] = float(
soup.find("span", attrs={"id": "wob_pp"}).text.replace("%", "")
)
data["humidity"] = float(
soup.find("span", attrs={"id": "wob_hm"}).text.replace("%", "")
)
data["wind_speed"] = soup.find("span", attrs={"id": "wob_ws"}).text
# Autodetect and convert "Temperature" and "Wind Speed" units
if "km/h" in data["wind_speed"]:
data["wind_speed"] = float(data["wind_speed"].replace("km/h", ""))
if output_units["speed"] == "mph":
data["wind_speed"] = converters.kmph_to_mph(data["wind_speed"])
if output_units["temp"] == "f":
data["temp"] = converters.c_to_f(data["temp"])
input_units = "metric"
else:
data["wind_speed"] = float(data["wind_speed"].replace("mph", ""))
if output_units["speed"] == "kph":
data["wind_speed"] = converters.mph_to_kmph(data["wind_speed"])
if output_units["temp"] == "c":
data["temp"] = converters.f_to_c(data["temp"])
input_units = "imperial"
return input_units, region, data
def _get_next_days(soup, input_units, output_units):
"""Gets a summary of the next 8 days (including today).
Args:
soup (bs4.BeautifulSoup): The BeautifoulSoup object.
input_units (string): The autodetected input units, they can be either
"metric" or "imperial".
output_units (dict): A dictionary contatining "temp" key, which can be
"c" for Celsius or "f" for Farenheit and a "speed"
key, which can be "km/h" for Kilometers Per Hour
or "mph" for Miles Per Hour.
Returns:
list: A list of the next 8 days (including today) containing "Weather
Condition", "Day Name", "Minimum Temperature" and "Maximum
Temperature" for each day.
"""
# Create a list to store the output data
data = list()
# Extract data from soup
days = soup.find("div", attrs={"id": "wob_dp"})
# Iterate over every single day
for day in days.findAll("div", attrs={"class": "wob_df"}):
day_name = day.find("div").attrs["aria-label"]
weather = day.find("img").attrs["alt"]
temp = day.findAll("span", {"class": "wob_t"})
# Get the right data for the chosen output units
if input_units == "metric":
if output_units["temp"] == "c":
max_temp = float(temp[0].text)
min_temp = float(temp[2].text)
else:
max_temp = float(temp[1].text)
min_temp = float(temp[3].text)
else:
if output_units["temp"] == "c":
max_temp = float(temp[1].text)
min_temp = float(temp[3].text)
else:
max_temp = float(temp[0].text)
min_temp = float(temp[2].text)
# Append the values to the output list
data.append(
{
"day": day_name,
"weather": weather,
"max_temp": max_temp,
"min_temp": min_temp,
}
)
return data
def _get_wind(soup, output_units):
"""Wind Direction and Wind Bearing must be retrieved in a "special" manner,
Google provides a 15 day forecast with 3 hour intervals containing Wind
Speed, Wind Direction, Datetime and Wind Bearing. This function extracts
this data.
Args:
soup (bs4.BeautifulSoup): The BeautifoulSoup object
output_units (dict): A dictionary contatining "temp" key, which can be
"c" for Celsius or "f" for Farenheit and a "speed"
key, which can be "km/h" for Kilometers Per Hour
or "mph" for Miles Per Hour.
Returns:
list: A list containing one entry for every 3 hour period, each entry
is another list, composed of wind speed, wind direction,
datetime and wind bearing.
"""
# Extracting the data from the "soup"
wind = str(soup.find("div", attrs={"id": "wob_wg", "class": "wob_noe"}))
data = re.findall(
r'"(\d+ [\w\/]+) \w+ (\w+) (\w+-*\w*,* [0-9:]+\s*\w*)" class="wob_t" style="display:inline;text-align:right">\d+ [\w\/]+<\/span><span aria-label="\d+ [\w\/]+ \w+-*\w*,* [0-9:]+\s*\w*" class="wob_t" style="display:none;text-align:right">\d+ [\w\/]+<\/span><\/div><div style="[\w-]+:\d+"><\/div><img alt="\d+ [\w\/]+ \w+ \w+" aria-hidden="true" src="\/\/ssl.gstatic.com\/m\/images\/weather\/\w+.\w+" style="transform-origin:\d+% \d+%;transform:rotate\((\d+)\w+\)',
wind,
)
# Extracting the input values units
if "km/h" in data[0][0]:
input_units = "metric"
else:
input_units = "imperial"
# Iterating over data to post process it
for idx, _ in enumerate(data):
data[idx] = list(data[idx])
# Removing the offset from Wind Bearing
data[idx][3] = int(data[idx][3]) - 90
# Extracting numerical values and converting units, if necessary
if input_units == "metric":
data[idx][0] = float(data[idx][0].replace("km/h", ""))
if output_units["speed"] == "mph":
data[idx][0] = converters.kmph_to_mph(data[idx][0])
else:
data[idx][0] = float(data[idx][0].replace("mph", ""))
if output_units["speed"] == "km/h":
data[idx][0] = converters.mph_to_kmph(data[idx][0])
return data
def _get_hourly_forecast(url, output_units):
"""This functions extracts hourly forecast data for the next 15 days.
Args:
header (dict): The header parameters to be used in the session.
url (string): The url address to create the session.
output_units (dict): A dictionary contatining "temp" key, which can be
"c" for Celsius or "f" for Farenheit and a "speed"
key, which can be "km/h" for Kilometers Per Hour
or "mph" for Miles Per Hour.
Returns:
list: A list containing one dictionary for every 1 hour period. Each
dictionary has "Datetime", "Humidity", "Precipitation Probability"
"Temperature", "Weather Condition" and "Wind Speed".
"""
# Build the header
header = {"User-Agent": GOOGLE_HEADER["User-Agent"]}
# Request and extract the data from the url
text = requests.get(url, headers=header).text
data_in = re.search(r"pmc='({.*?})'", text).group(1)
data_in = json.loads(data_in.replace(r"\x22", '"').replace(r'\\"', r"\""))
# Extracting the input values units
if "km/h" in data_in["wobnm"]["wobhl"][0]["ws"]:
input_units = "metric"
else:
input_units = "imperial"
# Create a list to store the output data
data_out = list()
# Iterate over each entry
for entry_in in data_in["wobnm"]["wobhl"]:
# Create a dictionary to store the output entry
entry_out = dict()
# Pull data from the input entry into the output entry
entry_out["datetime"] = entry_in["dts"]
entry_out["weather"] = entry_in["c"]
entry_out["humidity"] = float(entry_in["h"].replace("%", ""))
entry_out["precip_prob"] = float(entry_in["p"].replace("%", ""))
# Get the right data for the chosen output units
if input_units == "metric":
if output_units["temp"] == "c":
entry_out["temp"] = float(entry_in["tm"])
else:
entry_out["temp"] = float(entry_in["ttm"])
if output_units["speed"] == "km/h":
entry_out["wind_speed"] = float(entry_in["ws"].replace("km/h", ""))
else:
entry_out["wind_speed"] = float(entry_in["tws"].replace("mph", ""))
else:
if output_units["temp"] == "c":
entry_out["temp"] = float(entry_in["ttm"])
else:
entry_out["temp"] = float(entry_in["tm"])
if output_units["speed"] == "km/h":
entry_out["wind_speed"] = float(entry_in["tws"].replace("km/h", ""))
else:
entry_out["wind_speed"] = float(entry_in["ws"].replace("mph", ""))
# Append the output entry to the output list
data_out.append(entry_out)
return data_out
def get_data(region, output_units={"temp": "c", "speed": "km/h"}):
"""This is the wrapper that calls the other functions and joins the data into
one output.
Args:
header (dict): The header parameters to be used in the session.
url (string): The url address to create the session.
region (string): The desired region to get the weather forecast.
output_units (dict): A dictionary contatining "temp" key, which can be
"c" for Celsius or "f" for Farenheit and a "speed"
key, which can be "km/h" for Kilometers Per Hour
or "mph" for Miles Per Hour.
Returns:
dict: A dictionary containing all the data extracted by the other
functions
"""
# Build url and get the "soup" from it
url = f"{GOOGLE_URL}+{region.replace(' ', '+')}"
soup = _get_soup(url)
# Create a dictionary to store the output data
data = dict()
# Check if we got a soup to work with
if soup:
input_units, data["region"], data["weather_now"] = _get_weather_now(
soup, output_units
)
data["next_days"] = _get_next_days(soup, input_units, output_units)
data["wind"] = _get_wind(soup, output_units)
data["hourly_forecast"] = _get_hourly_forecast(url, output_units)
return data
if __name__ == "__main__":
data = get_data("curitiba", {"temp": "c", "speed": "km/h"})
pprint(data)