-
Notifications
You must be signed in to change notification settings - Fork 19
/
inference.py
161 lines (127 loc) · 5.34 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""Inference and visualization script for the imle-net model.
"""
__author__ = "Likith Reddy"
__version__ = "1.0.0"
__email__ = "likith012@gmail.com"
import logging
from utils.tf_utils import set_tf_loglevel
set_tf_loglevel(logging.ERROR)
import argparse, wfdb, os
import numpy as np
from joblib import load
import tensorflow as tf
import matplotlib.pyplot as plt
import plotly.express as px
from preprocessing.preprocess import apply_scaler
from models.IMLENet import build_imle_net
from configs.imle_config import Config
def build_model(name: str = "imle_net") -> tf.keras.Model:
""" Build the model and load the pretrained weights.
Parameters
----------
name: str, optional
Name of the model, only supports imle-net
"""
model = build_imle_net(Config())
outputs = tf.keras.layers.Dense(3, activation='softmax')(model.layers[-2].output[0])
model = tf.keras.models.Model(inputs = model.input, outputs = outputs)
try:
path_weights = os.path.join(os.getcwd(), "checkpoints", f"{name}_sub_diagnostic_weights.h5")
model.load_weights(path_weights)
except:
raise Exception("Model weights file not found, please train the model on sub-diagnostic diseases of MI first.")
return model
def data_utils(dir: str) -> np.asarray:
""" Preprocessing pipeline for a sample.
Parameters
----------
dir: str
Path to the sample, should contain the name of sample without extensions.
"""
sample_path = os.path.join(os.getcwd(), dir)
data = np.array([wfdb.rdsamp(sample_path)[0]])
scaler_path = os.path.join(os.getcwd(), 'data', 'standardization.bin')
scaler = load(scaler_path)
data = apply_scaler(data, scaler)
data = np.transpose(data[..., np.newaxis], (0,2,1,3))
return data
def build_scores(model: tf.keras.Model, data: np.asarray, config) -> None:
""" Calculating the attention scores and visualization.
Parameters
----------
model: tf.keras.Model
Model to be trained.
data: np.asarray
Sample data to be visualized.
config:
Configuration for the imle-net model.
"""
scores_model = tf.keras.models.Model(inputs = model.input, outputs = [model.get_layer("beat_att").output,
model.get_layer("rhythm_att").output,
model.get_layer("channel_att").output])
beat, rhythm, channel = scores_model(data)
beat = beat[1].numpy(); rhythm = rhythm[1].numpy(); channel = channel[1].numpy()
# Beat scores
lin = np.linspace(0, config.input_channels , num= config.beat_len)
beat = beat.reshape(240, 13)
beat_only = np.empty((240,config.beat_len))
for i in range(beat.shape[0]):
beat_only[i] = np.interp(lin, np.arange(13), beat[i])
# Rhythm scores
rhythm = rhythm.reshape(config.input_channels*int(config.signal_len / config.beat_len))
# Channel scores
channel = channel.flatten()
# Beat scores using channel
beat_channel = np.copy(beat_only.reshape(config.input_channels, config.beat_len * int(config.signal_len / config.beat_len)))
for i in range(config.input_channels):
beat_channel[i] = beat_channel[i] * channel[i]
beat_normalized = (beat_channel.flatten() - beat_channel.flatten().min(keepdims=True)) / (beat_channel.flatten().max( keepdims=True) - beat_channel.flatten().min(keepdims=True))
beat_normalized = beat_normalized.reshape(config.input_channels, config.signal_len)
v_min = np.min(beat_channel.flatten())
v_max = np.max(beat_channel.flatten())
ch_info = ['I',
'II',
'III',
'AVR',
'AVL',
'AVF',
'V1',
'V2',
'V3',
'V4',
'V5',
'V6']
results_filepath = os.path.join(os.getcwd(), "results")
os.makedirs(results_filepath, exist_ok=True)
fig, axs = plt.subplots(config.input_channels, figsize = (35, 25))
data = data.squeeze()
for i, (ax, ch) in enumerate(zip(axs, ch_info)):
im = ax.scatter(np.arange(len(data[i])), data[i], cmap = 'Spectral', c= beat_normalized[i], vmin = v_min, vmax = v_max)
ax.plot(data[i],color=(0.2, 0.68, 1))
ax.set_yticks([])
ax.set_title(ch, fontsize = 25)
fig.tight_layout()
cbar = fig.colorbar(im, ax=axs.ravel().tolist(), shrink=0.6)
cbar.set_ticks([])
plt.savefig(os.path.join(results_filepath, 'visualization.png'))
fig = px.bar(channel, title = 'Channel Importance Scores')
fig.update_xaxes(tickvals = np.arange(config.input_channels), ticktext = ch_info)
fig.write_html(os.path.join(results_filepath, 'channel_visualization.html'))
if __name__ == "__main__":
"""Main function for visualization."""
# Args parser
parser = argparse.ArgumentParser()
parser.add_argument(
"--dir", type=str, default="data/sample/04827_lr", help="Sample file location, should contain the name of sample without extensions"
)
parser.add_argument(
"--model",
type=str,
default="imle_net",
help="Select the model to train. (only imle_net)",
)
args = parser.parse_args()
config = Config()
model = build_model(name=args.model)
data = data_utils(args.dir)
build_scores(model, data, config)