-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdata.py
190 lines (165 loc) · 5.93 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import random
import torch
import numpy as np
import re
from google_bert import create_instances_from_document
PAD, UNK, CLS, SEP, MASK, NUM, NOT_CHINESE = '<-PAD->', '<-UNK->', '<-CLS->', '<-SEP->', '<-MASK->', '<-NUM->', '<-NOT_CHINESE->'
BUFSIZE = 40960000
def ListsToTensor(xs, vocab=None):
max_len = max(len(x) for x in xs)
ys = []
for x in xs:
if vocab is not None:
y = vocab.token2idx(x) + [vocab.padding_idx]*(max_len -len(x))
else:
y = x + [0]*(max_len -len(x))
ys.append(y)
data = torch.LongTensor(ys).t_().contiguous()
return data
def random_mask(tokens, masked_lm_prob, max_predictions_per_seq, vocab):
num_to_predict = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob))))
masked_tokens, mask = [], []
cand = []
for i, token in enumerate(tokens):
if token == CLS or token == SEP:
continue
cand.append(i)
random.shuffle(cand)
cand = set(cand[:num_to_predict])
masked_tokens, mask = [], []
for i, token in enumerate(tokens):
if i in cand:
if random.random() < 0.8:
masked_tokens.append(MASK)
else:
if random.random() < 0.5:
masked_tokens.append(token)
else:
masked_tokens.append(vocab.random_token())
mask.append(1)
else:
masked_tokens.append(token)
mask.append(0)
return masked_tokens, mask
def _back_to_text_for_check(x, vocab):
w = x.t().tolist()
for sent in vocab.idx2token(w):
print (' '.join(sent))
def batchify(data, vocab):
truth, inp, seg, msk = [], [], [], []
nxt_snt_flag = []
for a, b, r in data:
x = [CLS]+a+[SEP]+b+[SEP]
truth.append(x)
seg.append([0]*(len(a)+2) + [1]*(len(b)+1))
masked_x, mask = random_mask(x, 0.15, 20, vocab)
inp.append(masked_x)
msk.append(mask)
if r:
nxt_snt_flag.append(0)
else:
nxt_snt_flag.append(1)
truth = ListsToTensor(truth, vocab)
inp = ListsToTensor(inp, vocab)
seg = ListsToTensor(seg)
msk = ListsToTensor(msk).to(torch.uint8)
nxt_snt_flag = torch.ByteTensor(nxt_snt_flag)
return truth, inp, seg, msk, nxt_snt_flag
class DataLoader(object):
def __init__(self, vocab, filename, batch_size, max_len):
self.batch_size = batch_size
self.vocab = vocab
self.max_len = max_len
self.filename = filename
self.stream = open(self.filename, encoding='utf8')
self.epoch_id = 0
def __iter__(self):
lines = self.stream.readlines(BUFSIZE)
if not lines:
self.epoch_id += 1
self.stream.close()
self.stream = open(self.filename, encoding='utf8')
lines = self.stream.readlines(BUFSIZE)
docs = [[]]
for line in lines:
tokens = line.strip().split()
if tokens:
docs[-1].append(tokens)
else:
docs.append([])
docs = [x for x in docs if x]
random.shuffle(docs)
data = []
for idx, doc in enumerate(docs):
data.extend(create_instances_from_document(docs, idx, self.max_len))
idx = 0
while idx < len(data):
yield batchify(data[idx:idx+self.batch_size], self.vocab)
idx += self.batch_size
class Vocab(object):
def __init__(self, filename, min_occur_cnt, specials = None):
self.num_re = re.compile(r"^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$")
idx2token = [PAD, UNK, NUM, NOT_CHINESE] + ( specials if specials is not None else [])
for line in open(filename, encoding='utf8').readlines():
try:
token, cnt = line.strip().split()
except:
continue
if self.num_re.match(token) is not None:
continue
if _has_non_chinese_char(token):
if int(cnt) >= 2*min_occur_cnt:
idx2token.append(token)
else:
if int(cnt) >= 2*min_occur_cnt: # should not * 2 in the later revisions
idx2token.append(token)
self._token2idx = dict(zip(idx2token, range(len(idx2token))))
self._idx2token = idx2token
self._padding_idx = self._token2idx[PAD]
self._unk_idx = self._token2idx[UNK]
self._num_idx = self._token2idx[NUM]
self._no_chinese_idx = self._token2idx[NOT_CHINESE]
@property
def size(self):
return len(self._idx2token)
@property
def unk_idx(self):
return self._unk_idx
@property
def padding_idx(self):
return self._padding_idx
@property
def num_idx(self):
return self._num_idx
@property
def no_chinese_idx(self):
return self._no_chinese_idx
def random_token(self):
return self.idx2token(1 + np.random.randint(self.size-1))
def idx2token(self, x):
if isinstance(x, list):
return [self.idx2token(i) for i in x]
return self._idx2token[x]
def token2idx(self, x):
if isinstance(x, list):
return [self.token2idx(i) for i in x]
if x in self._token2idx:
return self._token2idx[x]
if self.num_re.match(x) is not None:
return self.num_idx
if _has_non_chinese_char(x):
return self._no_chinese_idx
return self.unk_idx
def _has_non_chinese_char(s):
for x in s:
cp = ord(x)
if not ((cp >= 0x4E00 and cp <= 0x9FFF) or
(cp >= 0x3400 and cp <= 0x4DBF) or
(cp >= 0x20000 and cp <= 0x2A6DF) or
(cp >= 0x2A700 and cp <= 0x2B73F) or
(cp >= 0x2B740 and cp <= 0x2B81F) or
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or
(cp >= 0x2F800 and cp <= 0x2FA1F)):
return True
return False