-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy patheval.py
496 lines (435 loc) · 17.2 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import numpy as np
import math
import sys
import os
def get_tag_fmeasure(golden_lists, predict_lists, label_type="char"):
sent_num = len(golden_lists)
golden_full = []
predict_full = []
golden_num = 0.
predict_num = 0.
right_num = 0.
all_tag = 0.
for idx in range(0,sent_num):
golden_list = golden_lists[idx]
predict_list = predict_lists[idx]
for idy in range(len(golden_list)):
if golden_list[idy] == predict_list[idy]:
right_num += 1
all_tag += len(golden_list)
golden_num += len(golden_list)
predict_num += len(predict_list)
golden_full.extend(golden_list)
predict_full.extend(predict_list)
if predict_num == 0:
precision = -1
else:
precision = (right_num+0.0)/predict_num
if golden_num == 0:
recall = -1
else:
recall = (right_num+0.0)/golden_num
if (precision == -1) or (recall == -1) or (precision+recall) <= 0.:
f_measure = -1
else:
f_measure = 2*precision*recall/(precision+recall)
accuracy = (right_num+0.0)/all_tag
print ("gold_num = ", golden_num, " pred_num = ", predict_num, " right_num = ", right_num)
'''
print (precision, recall, f_measure)
print("confusion_matrix:")
cm = confusion_matrix(golden_full, predict_full)
print(cm)
print("recall:")
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print(cm_normalized)
print("precision:")
cm_normalized = cm.astype('float') / cm.sum(axis=0)[np.newaxis, :]
print(cm_normalized)
'''
return accuracy, precision, recall, f_measure
## input as sentence level labels
def get_ner_fmeasure(golden_lists, predict_lists, label_type="BMES"):
sent_num = len(golden_lists)
golden_full = []
predict_full = []
right_full = []
right_tag = 0
all_tag = 0
for idx in range(0,sent_num):
# word_list = sentence_lists[idx]
golden_list = golden_lists[idx]
predict_list = predict_lists[idx]
for idy in range(len(golden_list)):
if golden_list[idy] == predict_list[idy]:
right_tag += 1
all_tag += len(golden_list)
if label_type == "BMES":
gold_matrix = get_ner_BMES(golden_list)
pred_matrix = get_ner_BMES(predict_list)
else:
gold_matrix = get_ner_BIO(golden_list)
pred_matrix = get_ner_BIO(predict_list)
# print "gold", gold_matrix
# print "pred", pred_matrix
right_ner = list(set(gold_matrix).intersection(set(pred_matrix)))
golden_full += gold_matrix
predict_full += pred_matrix
right_full += right_ner
right_num = len(right_full)
golden_num = len(golden_full)
predict_num = len(predict_full)
if predict_num == 0:
precision = -1
else:
precision = (right_num+0.0)/predict_num
if golden_num == 0:
recall = -1
else:
recall = (right_num+0.0)/golden_num
if (precision == -1) or (recall == -1) or (precision+recall) <= 0.:
f_measure = -1
else:
f_measure = 2*precision*recall/(precision+recall)
accuracy = (right_tag+0.0)/all_tag
# print "Accuracy: ", right_tag,"/",all_tag,"=",accuracy
print ("gold_num = ", golden_num, " pred_num = ", predict_num, " right_num = ", right_num)
print (precision, recall, f_measure)
return accuracy, precision, recall, f_measure
def reverse_style(input_string):
target_position = input_string.index('[')
input_len = len(input_string)
output_string = input_string[target_position:input_len] + input_string[0:target_position]
return output_string
def get_ner_BMES(label_list):
# list_len = len(word_list)
# assert(list_len == len(label_list)), "word list size unmatch with label list"
list_len = len(label_list)
begin_label = 'B-'
end_label = 'E-'
single_label = 'S-'
whole_tag = ''
index_tag = ''
tag_list = []
stand_matrix = []
for i in range(0, list_len):
# wordlabel = word_list[i]
current_label = label_list[i].upper()
if begin_label in current_label:
if index_tag != '':
tag_list.append(whole_tag + ',' + str(i-1))
whole_tag = current_label.replace(begin_label,"",1) +'[' +str(i)
index_tag = current_label.replace(begin_label,"",1)
elif single_label in current_label:
if index_tag != '':
tag_list.append(whole_tag + ',' + str(i-1))
whole_tag = current_label.replace(single_label,"",1) +'[' +str(i)
tag_list.append(whole_tag)
whole_tag = ""
index_tag = ""
elif end_label in current_label:
if index_tag != '':
tag_list.append(whole_tag +',' + str(i))
whole_tag = ''
index_tag = ''
else:
continue
if (whole_tag != '')&(index_tag != ''):
tag_list.append(whole_tag)
tag_list_len = len(tag_list)
for i in range(0, tag_list_len):
if len(tag_list[i]) > 0:
tag_list[i] = tag_list[i]+ ']'
insert_list = reverse_style(tag_list[i])
stand_matrix.append(insert_list)
# print stand_matrix
return stand_matrix
def get_ner_BIO(label_list):
# list_len = len(word_list)
# assert(list_len == len(label_list)), "word list size unmatch with label list"
list_len = len(label_list)
begin_label = 'B-'
inside_label = 'I-'
whole_tag = ''
index_tag = ''
tag_list = []
stand_matrix = []
for i in range(0, list_len):
# wordlabel = word_list[i]
current_label = label_list[i].upper()
if begin_label in current_label:
if index_tag == '':
whole_tag = current_label.replace(begin_label,"",1) +'[' +str(i)
index_tag = current_label.replace(begin_label,"",1)
else:
tag_list.append(whole_tag + ',' + str(i-1))
whole_tag = current_label.replace(begin_label,"",1) + '[' + str(i)
index_tag = current_label.replace(begin_label,"",1)
elif inside_label in current_label:
if current_label.replace(inside_label,"",1) == index_tag:
whole_tag = whole_tag
else:
if (whole_tag != '')&(index_tag != ''):
tag_list.append(whole_tag +',' + str(i-1))
whole_tag = ''
index_tag = ''
else:
if (whole_tag != '')&(index_tag != ''):
tag_list.append(whole_tag +',' + str(i-1))
whole_tag = ''
index_tag = ''
if (whole_tag != '')&(index_tag != ''):
tag_list.append(whole_tag)
tag_list_len = len(tag_list)
for i in range(0, tag_list_len):
if len(tag_list[i]) > 0:
tag_list[i] = tag_list[i]+ ']'
insert_list = reverse_style(tag_list[i])
stand_matrix.append(insert_list)
return stand_matrix
def readSentence(input_file):
with open(input_file, 'r', encoding = 'utf8') as i:
in_lines = i.readlines()
sentences = []
labels = []
sentence = []
label = []
for line in in_lines:
if len(line) < 2:
sentences.append(sentence)
labels.append(label)
sentence = []
label = []
else:
pair = line.strip('\n').split(' ')
sentence.append(pair[0])
label.append(pair[-1])
return sentences,labels
def readTwoLabelSentence(input_file, pred_col=-1):
with open(input_file, 'r', encoding = 'utf8') as i:
in_lines = i.readlines()
sentences = []
predict_labels = []
golden_labels = []
sentence = []
predict_label = []
golden_label = []
for line in in_lines:
if "##score##" in line:
continue
if len(line) < 2:
sentences.append(sentence)
golden_labels.append(golden_label)
predict_labels.append(predict_label)
sentence = []
golden_label = []
predict_label = []
else:
pair = line.strip().split(' ')
sentence.append(pair[0])
golden_label.append(pair[1])
predict_label.append(pair[pred_col])
return sentences,golden_labels,predict_labels
def fmeasure_from_file(golden_file, predict_file, label_type="BMES"):
print ("Get f measure from file:", golden_file, predict_file)
print ("Label format:",label_type)
golden_sent,golden_labels = readSentence(golden_file)
predict_sent,predict_labels = readSentence(predict_file)
acc, P,R,F = get_ner_fmeasure(golden_labels, predict_labels, label_type)
print ("Acc:%s, P:%s R:%s, F:%s"%(acc, P,R,F))
def fmeasure_from_singlefile(twolabel_file, label_type="BMES", pred_col=-1):
sent,golden_labels,predict_labels = readTwoLabelSentence(twolabel_file, pred_col)
if label_type=="char":
A,P,R,F = get_tag_fmeasure(golden_labels, predict_labels, label_type)
else:
A,P,R,F = get_ner_fmeasure(golden_labels, predict_labels, label_type)
#print ("P:%s, R:%s, F:%s"%(P,R,F))
return P, R, F
def combine_result(gold_path, pred_path, out_path):
with open(out_path, 'w', encoding = 'utf8') as o:
with open(gold_path, 'r', encoding = 'utf8') as g:
gold_lines = g.readlines()
with open(pred_path, 'r', encoding = 'utf8') as p:
pred_lines = p.readlines()
assert len(gold_lines) == len(pred_lines)
data_num = len(gold_lines)
for i in range(data_num):
gold_l = gold_lines[i]
pred_l = pred_lines[i]
gold_content_list = gold_l.strip('\n').split('\t')
text = gold_content_list[0]
gold_label_str = gold_content_list[1]
pred_l = pred_lines[i]
pred_content_list = pred_l.strip('\n').split('\t')
pred_label_str = pred_content_list[1]
gold_label_list = gold_label_str.split()
pred_label_list = pred_label_str.split()
assert len(gold_label_list) == len(pred_label_list)
text_list = text.split()
instance_len = len(text_list)
for j in range(instance_len):
out_str = text_list[j] + ' ' + gold_label_list[j] + ' ' + pred_label_list[j]
o.writelines(out_str + '\n')
o.writelines('\n')
def eval_char_sent(sources, labels, predicts, strict=True):
corrected_char = 0
wrong_char = 0
corrected_sent = 0
wrong_sent = 0
true_corrected_char = 0
true_corrected_sent = 0
true_detected_char = 0
true_detected_sent = 0
accurate_detected_sent = 0
accurate_corrected_sent = 0
all_sent = 0
for wrong, correct, predict in zip(sources, labels, predicts):
all_sent += 1
falsely_corrected_char_in_sentence = 0
falsely_detected_char_in_sentence = 0
true_corrected_char_in_sentence = 0
wrong_num = 0
corrected_num = 0
original_wrong_num = 0
true_detected_char_in_sentence = 0
for c, w, p in zip(correct, wrong, predict):
if c != p:
wrong_num += 1
if w != p:
corrected_num += 1
if c == p:
true_corrected_char += 1
if w != c:
true_detected_char += 1
true_detected_char_in_sentence += 1
if c != w:
original_wrong_num += 1
corrected_char += corrected_num
wrong_char += original_wrong_num
if original_wrong_num != 0:
wrong_sent += 1
if corrected_num != 0 and wrong_num == 0:
true_corrected_sent += 1
if corrected_num != 0:
corrected_sent += 1
if strict:
true_detected_flag = (true_detected_char_in_sentence == original_wrong_num and original_wrong_num != 0 and corrected_num == true_detected_char_in_sentence)
else:
true_detected_flag = (corrected_num != 0 and original_wrong_num != 0)
# if corrected_num != 0 and original_wrong_num != 0:
if true_detected_flag:
true_detected_sent += 1
if correct == predict:
accurate_corrected_sent += 1
if correct == predict or true_detected_flag:
accurate_detected_sent += 1
c_char_p = true_corrected_char/corrected_char
c_char_r = true_corrected_char/wrong_char
c_char_f1 = 2 * c_char_p * c_char_r / (c_char_p + c_char_r)
d_char_p = true_detected_char/corrected_char
d_char_r = true_detected_char/wrong_char
d_char_f1 = 2 * d_char_p * d_char_r / (d_char_p + d_char_r)
c_sent_p = true_corrected_sent/corrected_sent
c_sent_r = true_corrected_sent/wrong_sent
c_sent_f1 = 2 * c_sent_p * c_sent_r / (c_sent_p + c_sent_r)
c_sent_a = accurate_corrected_sent/all_sent
d_sent_p = true_detected_sent/corrected_sent
d_sent_r = true_detected_sent/wrong_sent
d_sent_f1 = 2 * d_sent_p * d_sent_r / (d_sent_p + d_sent_r)
d_sent_a = accurate_detected_sent/all_sent
print("https://github.com/iqiyi/FASPell:")
print("detection:")
print("d_char_p=%.4f, d_char_r=%.4f, d_char_f1=%.4f"%(d_char_p, d_char_r, d_char_f1))
print("d_sent_a=%.4f, d_sent_p=%.4f, d_sent_r=%.4f, d_sent_f1=%.4f"%(d_sent_a, d_sent_p, d_sent_r, d_sent_f1))
print("corretion:")
print("c_char_p=%.4f, c_char_r=%.4f, c_char_f1=%.4f"%(c_char_p, c_char_r, c_char_f1))
print("c_sent_a=%.4f, c_sent_p=%.4f, c_sent_r=%.4f, c_sent_f1=%.4f"%(c_sent_a, c_sent_p, c_sent_r, c_sent_f1))
def eval_char(sources, labels, predicts):
print("https://github.com/sunnyqiny/Confusionset-guided-Pointer-Networks-for-Chinese-Spelling-Check/blob/master/utils/evaluation_metrics.py:")
TP = 0
FP = 0
FN = 0
all_predict_true_index = []
all_gold_index = []
for item in zip(sources, labels, predicts):
src, tgt, predict = item
gold_index = []
each_true_index = []
for i in range(len(src)):
if src[i] == tgt[i]:
continue
else:
gold_index.append(i)
all_gold_index.append(gold_index)
predict_index = []
for i in range(len(src)):
if i >= len(predict):
predict_index.append(i)
continue
if src[i] == predict[i]:
continue
else:
predict_index.append(i)
for i in predict_index:
if i in gold_index:
TP += 1
each_true_index.append(i)
else:
FP += 1
for i in gold_index:
if i in predict_index:
continue
else:
FN += 1
all_predict_true_index.append(each_true_index)
# For the detection Precision, Recall and F1
detection_precision = TP / (TP + FP) if (TP+FP) > 0 else 0
detection_recall = TP / (TP + FN) if (TP+FN) > 0 else 0
detection_f1 = 2 * (detection_precision * detection_recall) / (detection_precision + detection_recall) if (detection_precision + detection_recall) > 0 else 0
print("The detection result is precision={}, recall={} and F1={}".format(detection_precision, detection_recall, detection_f1))
TP = 0
FP = 0
FN = 0
for i in range(len( all_predict_true_index)):
# we only detect those correctly detected location, which is a different from the common metrics since
# we wanna to see the precision improve by using the confusionset
if len(all_predict_true_index[i]) > 0:
predict_words = []
for j in all_predict_true_index[i]:
predict_words.append(predicts[i][j])
if labels[i][j] == predicts[i][j]:
TP += 1
else:
FP += 1
for j in all_gold_index[i]:
if labels[i][j] in predict_words:
continue
else:
FN += 1
# For the correction Precision, Recall and F1
correction_precision = TP / (TP + FP) if (TP+FP) > 0 else 0
correction_recall = TP / (TP + FN) if (TP+FN) > 0 else 0
correction_f1 = 2 * (correction_precision * correction_recall) / (correction_precision + correction_recall) if (correction_precision + correction_recall) > 0 else 0
print("The correction result is precision={}, recall={} and F1={}".format(correction_precision, correction_recall, correction_f1))
return detection_f1, correction_f1
def eval_prf(file_with_source_label_pred):
sources = []
labels = []
predicts = []
with open(file_with_source_label_pred) as f:
for line in f:
line = line.strip()
if line:
fs = line.split("\t")
if len(fs) != 3:
print("ERROR eval")
sources.append(fs[0])
labels.append(fs[2])
predicts.append(fs[1])
return sources, labels, predicts
if __name__ == '__main__':
#combine_result(sys.argv[1], sys.argv[2], 'tmp')
#P, R, F = fmeasure_from_singlefile('tmp',"BMES")
sources, labels, predicts = eval_prf(sys.argv[1])
eval_char(sources, labels, predicts)
eval_char_sent(sources, labels, predicts)