-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain.py
360 lines (313 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import sys
import torch
from torch import nn
import torch.nn.functional as F
import random
#### Load pretrained bert model
from bert import BERTLM
from google_bert import BasicTokenizer
from data import Vocab, CLS, SEP, MASK
import numpy as np
from data_loader import DataLoader
from crf_layer import DynamicCRF
import os
from funcs import *
def init_bert_model(args, device, bert_vocab):
bert_ckpt= torch.load(args.bert_path)
bert_args = bert_ckpt['args']
bert_vocab = Vocab(bert_vocab, min_occur_cnt=bert_args.min_occur_cnt, specials=[CLS, SEP, MASK])
bert_model = BERTLM(device, bert_vocab, bert_args.embed_dim, bert_args.ff_embed_dim, bert_args.num_heads, \
bert_args.dropout, bert_args.layers, bert_args.approx)
bert_model.load_state_dict(bert_ckpt['model'])
bert_model = bert_model.cuda(device)
if args.freeze == 1:
for p in bert_model.parameters():
p.requires_grad=False
return bert_model, bert_vocab, bert_args
def ListsToTensor(xs, vocab):
batch_size = len(xs)
lens = [ len(x)+2 for x in xs]
mx_len = max(lens)
ys = []
for i, x in enumerate(xs):
y = vocab.token2idx([CLS]+x) + ([vocab.padding_idx]*(mx_len - lens[i]))
ys.append(y)
data = torch.LongTensor(ys).t_().contiguous()
return data
def batchify(data, vocab):
return ListsToTensor(data, vocab)
class myModel(nn.Module):
def __init__(self, bert_model, num_class, embedding_size, batch_size, dropout, device, vocab, loss_type='FC_FT_CRF'):
super(myModel, self).__init__()
self.bert_model = bert_model
self.dropout = dropout
self.device = device
self.batch_size = batch_size
self.embedding_size = embedding_size
self.num_class = num_class
self.vocab = vocab
self.fc = nn.Linear(self.embedding_size, self.num_class)
self.CRF_layer = DynamicCRF(num_class)
self.loss_type = loss_type
self.bert_vocab = vocab
def nll_loss(self, y_pred, y, y_mask, avg=True):
cost = -torch.log(torch.gather(y_pred, 2, y.view(y.size(0), y.size(1), 1)))
cost = cost.view(y.shape)
y_mask = y_mask.view(y.shape)
if avg:
cost = torch.sum(cost * y_mask, 0) / torch.sum(y_mask, 0)
else:
cost = torch.sum(cost * y_mask, 0)
cost = cost.view((y.size(1), -1))
return torch.mean(cost)
def fc_nll_loss(self, y_pred, y, y_mask, gamma=None, avg=True):
if gamma is None:
gamma = 2
p = torch.gather(y_pred, 2, y.view(y.size(0), y.size(1), 1))
g = (1-torch.clamp(p, min=0.01, max=0.99))**gamma
#g = (1 - p) ** gamma
cost = -g * torch.log(p+1e-8)
cost = cost.view(y.shape)
y_mask = y_mask.view(y.shape)
if avg:
cost = torch.sum(cost * y_mask, 0) / torch.sum(y_mask, 0)
else:
cost = torch.sum(cost * y_mask, 0)
cost = cost.view((y.size(1), -1))
return torch.mean(cost), g.view(y.shape)
def forward(self, text_data, in_mask_matrix, in_tag_matrix, fine_tune=False, gamma=None):
current_batch_size = len(text_data)
max_len = 0
for instance in text_data:
max_len = max(len(instance), max_len)
seq_len = max_len + 1 # 1 for [CLS]]
# in_mask_matrix.size() == [batch_size, seq_len]
# in_tag_matrix.size() == [batch_size, seq_len]
mask_matrix = torch.tensor(in_mask_matrix, dtype=torch.uint8).t_().contiguous().cuda(self.device)
tag_matrix = torch.LongTensor(in_tag_matrix).t_().contiguous().cuda(self.device) # size = [seq_len, batch_size]
assert mask_matrix.size() == tag_matrix.size()
assert mask_matrix.size() == torch.Size([seq_len, current_batch_size])
# input text_data.size() = [batch_size, seq_len]
data = batchify(text_data, self.vocab) # data.size() == [seq_len, batch_size]
data = data.cuda(self.device)
sequence_representation = self.bert_model.work(data)[0].cuda(self.device) # [seq_len, batch_size, embedding_size]
# dropout
sequence_representation = F.dropout(sequence_representation, p=self.dropout, training=self.training)
sequence_representation = sequence_representation.view(current_batch_size * seq_len, self.embedding_size)
sequence_emissions = self.fc(sequence_representation)
sequence_emissions = sequence_emissions.view(seq_len, current_batch_size, self.num_class)
# bert finetune loss
probs = torch.softmax(sequence_emissions, -1)
if "FC" in self.loss_type:
loss_ft_fc, g = self.fc_nll_loss(probs, tag_matrix, mask_matrix, gamma=gamma)
else:
loss_ft = self.nll_loss(probs, tag_matrix, mask_matrix)
sequence_emissions = sequence_emissions.transpose(0, 1)
tag_matrix = tag_matrix.transpose(0, 1)
mask_matrix = mask_matrix.transpose(0, 1)
if "FC" in self.loss_type:
#loss_crf_fc = -self.CRF_layer(sequence_emissions, tag_matrix, mask = mask_matrix, reduction='token_mean', g=g.transpose(0, 1), gamma=gamma)
loss_crf_fc = -self.CRF_layer(sequence_emissions, tag_matrix, mask = mask_matrix, reduction='token_mean', g=None, gamma=gamma)
else:
loss_crf = -self.CRF_layer(sequence_emissions, tag_matrix, mask = mask_matrix, reduction='token_mean')
decode_result = self.CRF_layer.decode(sequence_emissions, mask = mask_matrix)
self.decode_scores, self.decode_result = decode_result
self.decode_result = self.decode_result.tolist()
if self.loss_type == 'CRF':
loss = loss_crf
return self.decode_result, loss, loss_crf.item(), 0.0
elif self.loss_type == 'FT_CRF':
loss = loss_ft + loss_crf
return self.decode_result, loss, loss_crf.item(), loss_ft.item()
elif self.loss_type == 'FC_FT_CRF':
loss = loss_ft_fc + loss_crf_fc
return self.decode_result, loss, loss_crf_fc.item(), loss_ft_fc.item()
elif self.loss_type == 'FC_CRF':
loss = loss_crf_fc
return self.decode_result, loss, loss_crf_fc.item(), 0.0
else:
print("error")
return self.decode_result, 0, 0, 0
import argparse
def parse_config():
parser = argparse.ArgumentParser()
parser.add_argument('--bert_path', type=str)
parser.add_argument('--train_data',type=str)
parser.add_argument('--dev_data',type=str)
parser.add_argument('--test_data',type=str)
parser.add_argument('--label_data',type=str)
parser.add_argument('--batch_size',type=int)
parser.add_argument('--lr',type=float)
parser.add_argument('--dropout',type=float)
parser.add_argument('--freeze',type=int)
parser.add_argument('--number_class', type = int)
parser.add_argument('--number_epoch', type = int)
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--fine_tune', action='store_true')
parser.add_argument('--print_every', type=int)
parser.add_argument('--save_every', type=int)
parser.add_argument('--bert_vocab', type=str)
parser.add_argument('--loss_type', type=str)
parser.add_argument('--gamma', type=float)
parser.add_argument('--model_save_path', type=str)
parser.add_argument('--prediction_max_len', type=int)
parser.add_argument('--dev_eval_path', type=str)
parser.add_argument('--final_eval_path', type=str)
parser.add_argument('--l2_lambda', type=float)
parser.add_argument('--training_max_len', type=int)
return parser.parse_args()
if __name__ == "__main__":
args = parse_config()
# --- create model save path --- #
directory = args.model_save_path
try:
os.stat(directory)
except:
os.mkdir(directory)
# myModel construction
print ('Initializing model...')
bert_model, bert_vocab, bert_args = init_bert_model(args, args.gpu_id, args.bert_vocab)
id_label_dict = {}#get_id_label_dict(bert_vocab)
for lid, label in enumerate(bert_vocab._idx2token):
id_label_dict[lid] = label
batch_size = args.batch_size
number_class = len(id_label_dict) #args.number_class
print(number_class)
embedding_size = bert_args.embed_dim
fine_tune = args.fine_tune
loss_type = args.loss_type
l2_lambda = args.l2_lambda
model = myModel(bert_model, number_class, embedding_size, batch_size, args.dropout, args.gpu_id, bert_vocab, loss_type)
model = model.cuda(args.gpu_id)
print ('Model construction finished.')
# Data Preparation
train_path, dev_path, test_path = args.train_data, args.dev_data, args.test_data
#label_path = args.label_data
train_max_len = args.training_max_len
nerdata = DataLoader(train_path, dev_path, test_path, bert_vocab, train_max_len)
print ('data is ready')
optimizer = torch.optim.Adam(model.parameters(), args.lr)
#--- training part ---#
num_epochs = args.number_epoch
training_data_num, dev_data_num, test_data_num = nerdata.train_num, nerdata.dev_num, nerdata.test_num
train_step_num = int(training_data_num / batch_size) + 1
dev_step_num = dev_data_num
test_step_num = test_data_num # batch_size = 1 来进行predict
max_dev_acc = 0.0
max_dev_f1 = 0.0
train_f1_list, train_precision_list, train_recall_list = [], [], []
dev_f1_list, dev_precision_list, dev_recall_list = [], [], []
prediction_max_len = args.prediction_max_len # 用来分块截取prediction的
dev_eval_path = args.dev_eval_path
final_eval_path = args.final_eval_path
acc_bs = 0.
for epoch in range(num_epochs):
loss_accumulated = 0.
loss_crf_accumulated = 0.
loss_ft_accumulated = 0.
model.train()
print ('-------------------------------------------')
if epoch % 5 == 0:
print ('%d epochs have run' % epoch)
else:
pass
total_train_pred = list()
total_train_true = list()
batches_processed = 0
for train_step in range(train_step_num):
batches_processed += 1
acc_bs += 1
optimizer.zero_grad()
train_batch_text_list, train_batch_tag_list = nerdata.get_next_batch(batch_size, mode = 'train')
# tag target matrix
train_tag_matrix = process_batch_tag(train_batch_tag_list, nerdata.label_dict)
# tag mask matrix
train_mask_matrix = make_mask(train_batch_tag_list)
# forward computation
train_batch_result, train_loss, loss_crf, loss_ft = \
model(train_batch_text_list, train_mask_matrix, train_tag_matrix, fine_tune, args.gamma)
l2_reg = None
for W in model.parameters():
if l2_reg is None:
l2_reg = W.norm(2)
else:
l2_reg = l2_reg + W.norm(2)
train_loss = train_loss + l2_lambda * l2_reg
# update
loss_accumulated += train_loss.item()
loss_crf_accumulated += loss_crf
loss_ft_accumulated += loss_ft
train_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
valid_train_batch_result = get_valid_predictions(train_batch_result, train_batch_tag_list, nerdata.label_dict)
for i in range(batch_size):
assert len(list(valid_train_batch_result[i])) == len(list(train_batch_tag_list[i]))
total_train_pred.extend(list(valid_train_batch_result[i]))
total_train_true.extend(list(train_batch_tag_list[i]))
if acc_bs % args.print_every == 0:
print ("gBatch %d, lBatch %d, loss %.5f, loss_crf %.5f, loss_ft %.5f" % \
(acc_bs, batches_processed, loss_accumulated / batches_processed,\
loss_crf_accumulated / batches_processed, loss_ft_accumulated / batches_processed))
if acc_bs % args.save_every == 0:
model.eval()
gold_tag_list = []
pred_tag_list = []
with torch.no_grad():
with open(dev_eval_path, 'w', encoding = 'utf8') as o:
for dev_step in range(dev_step_num):
dev_batch_text_list, dev_batch_tag_list = nerdata.get_next_batch(batch_size = 1, mode = 'dev')
dev_tag_matrix = process_batch_tag(dev_batch_tag_list, nerdata.label_dict)
dev_mask_matrix = make_mask(dev_batch_tag_list)
dev_batch_result, _, _, _ = \
model(dev_batch_text_list, dev_mask_matrix, dev_tag_matrix, fine_tune = False)
dev_text = ''
for token in dev_batch_text_list[0]:
dev_text += token + ' '
dev_text = dev_text.strip()
valid_dev_text_len = len(dev_batch_text_list[0])
dev_tag_str = ''
pred_tags = []
for tag in dev_batch_result[0][1:valid_dev_text_len + 1]:
dev_tag_str += id_label_dict[int(tag)] + ' '
pred_tags.append(int(tag))
dev_tag_str = dev_tag_str.strip()
out_line = dev_text + '\t' + dev_tag_str
o.writelines(out_line + '\n')
gold_tag_list.append(dev_batch_tag_list[0])
pred_tag_list.append(pred_tags)
assert len(gold_tag_list) == len(pred_tag_list)
pp, rr, ff = 0., 0., 0.
for glist, plist in zip(gold_tag_list, pred_tag_list):
acc = 0.
for gi, gtag in enumerate(glist):
if gtag == plist[gi]:
acc += 1
pi = acc / (len(plist)+1e-8)
ri = acc / (len(glist)+1e-8)
fi = 2 * pi * ri / (pi + ri + 1e-8)
pp += pi
rr += ri
ff += fi
one_dev_f1 = ff / len(gold_tag_list)
one_dev_precision = pp / len(gold_tag_list)
one_dev_recall = rr / len(gold_tag_list)
dev_f1_list.append(one_dev_f1)
dev_precision_list.append(one_dev_precision)
dev_recall_list.append(one_dev_recall)
print ('At epoch %d, official dev f1 : %f, precision : %f, recall : %f' % \
(epoch, one_dev_f1, one_dev_precision, one_dev_recall))
torch.save({'args':args, 'model':model.state_dict(),
'bert_args': bert_args,
'bert_vocab':model.bert_vocab
}, directory + '/epoch_%d_dev_f1_%.3f'%(epoch + 1, one_dev_f1))
max_dev_f1 = one_dev_f1
model.train() # !!!!!!
max_dev_f1_idx = np.argmax(dev_f1_list)
max_dev_f1 = dev_f1_list[max_dev_f1_idx]
max_dev_precision = dev_precision_list[max_dev_f1_idx]
max_dev_recall = dev_recall_list[max_dev_f1_idx]
print ('-----------------------------------------------------')
print ('At this run, the maximum dev f1:%f, dev precision:%f, dev recall:%f' % \
(max_dev_f1, max_dev_precision, max_dev_recall))
print ('-----------------------------------------------------')