-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathBSBL_FM.m
394 lines (373 loc) · 12.6 KB
/
BSBL_FM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
function Result = BSBL_FM(PHI,y,blkStartLoc,LearnLambda,varargin)
%------------------------------------------------------------------
% The block BCS algorithm for our following paper:
% "Fast Marginalized Block SBL Algorithm" (Preprint, 2012)
%
% for Zhang Zhilin's
% "Extension of SBL Algorithms for the Recovery of Block
% Sparse Signals with Intra-Block Correlation" (Preprint, Zhang2012)
%
% Coded by: Liu Benyuan
% Change Log:
% v1.5[20121122]: optimized for speed
% v1.6[20121122]: add complex support, only works for learnType=0;
% v1.7[20121126]: add comments
%
%------------------------------------------------------------------
% Input for BSBL-FM:
% PHI: projection matrix
% y: CS measurements
% blkStartLoc : Start location of each block
% LearnLambda : (1) If LearnLambda = 1,
% use the lambda learning rule for MEDIUM SNR cases (SNR<=30dB)
% (using lambda=std(y)*1e-2 or user-input value as initial value)
% (2) If LearnLambda = 2,
% use the lambda learning rule for HIGH SNR cases (SNR>30dB)
% (using lambda=std(y)*1e-3 or user-input value as initial value)
% (3) If LearnLambda = 0, do not use the lambda learning rule
% ((using lambda=1e-7 or user-input value as initial value)
%
% [varargin values -- in most cases you can use the default values]
% 'LEARNTYPE' : LEARNTYPE = 0: Ignore intra-block correlation
% LEARNTYPE = 1: Exploit intra-block correlation
% [ Default: LEARNTYPE = 1 ]
% 'VERBOSE' : debuging information.
% 'EPSILON' : convergence criterion
%
% ============================== OUTPUTS ==============================
% Result :
% Result.x : the estimated block sparse signal
% Result.gamma_used : indexes of nonzero groups in the sparse signal
% Result.gamma_est : the gamma values of all the groups of the signal
% Result.B : the final mean value of each correlation block
% Result.count : iteration times
% Result.lambda : the final value of lambda
% default values for BSBL-FM
eta = 1e-4; % default convergence test
verbose = 0; % print some debug information
learnType = 0; % default not to exploit intra block correlation
max_it = 1000; % maximum iterations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0. intialize, scale
scl = max(std(y)); % max scale
if (scl < 0.4) || (scl > 1)
y = y/scl*0.4;
end
[~,M] = size(PHI);
[~,T] = size(y);
% select sigma2
stdy2 = mean(std(y))^2;
sigma2 = 1e-3*stdy2; % default value if otherwise specified [99]
if LearnLambda == 0
sigma2 = 1e-6; % noiseless [0 ]
elseif LearnLambda == 2
sigma2 = 1e-2*stdy2; % high SNR (SNR>=20) [2 ]
elseif LearnLambda == 1
sigma2 = 1e-1*stdy2; % medium SNR (SNR<20) [1 ]
end
if(mod(length(varargin),2)==1)
error('Optional parameters should always go by pairs\n');
else
for i=1:2:(length(varargin)-1)
switch lower(varargin{i})
case 'learntype'
learnType = varargin{i+1};
case 'epsilon'
eta = varargin{i+1};
case 'sigma2_scale'
sigma2 = varargin{i+1}*stdy2;
case 'max_iters'
max_it = varargin{i+1};
case 'verbose'
verbose = varargin{i+1};
otherwise
error(['Unrecognized parameter: ''' varargin{i} '''']);
end
end
end
beta = 1/sigma2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. formalize the blocks and quantities used in the code
% p : the number of blocks
% blkStartLoc : the start index of blk
% blkLenList : the length of each block
p = length(blkStartLoc);
blkLenList = ones(p,1);
for k = 1 : p-1
blkLenList(k) = blkStartLoc(k+1)-blkStartLoc(k);
end
blkLenList(p) = M - blkStartLoc(end)+1;
maxLen = max(blkLenList);
if sum(blkLenList == maxLen) == p,
equalSize = 1;
else
equalSize = 0;
end
% when the blkLen=1 we avoid the exploiting feature.
if maxLen == 1,
learnType = 0;
end
% pre-allocating space
S = cell(p,1); s = cell(p,1);
Q = cell(p,1); q = cell(p,1);
currentSeg = cell(p,1);
localSeg = cell(p,1);
Phi = cell(p,1);
% 2. prepare the quantities used in the code.
for k = 1 : p
currentLoc = blkStartLoc(k);
currentLen = blkLenList(k);
currentSeg{k} = currentLoc:1:currentLoc + currentLen - 1;
Phi{k} = PHI(:,currentSeg{k});
S{k} = beta.*Phi{k}'*Phi{k};
Q{k} = beta.*Phi{k}'*y;
end
% 3. start from *NULL*, decide which one to add ->
A = cell(p,1);
Am = cell(p,1); % old A
theta = zeros(p,1);
for k = 1 : p
A{k} = (S{k})\(Q{k}*Q{k}' - S{k})/(S{k});
theta(k) = 1/blkLenList(k) * real(trace(A{k}));
A{k} = eye(blkLenList(k)).*theta(k);
end
% select the basis that minimize the change of *likelihood*
ml = inf*ones(1,p);
ig0 = find(theta>0);
len = length(ig0);
for kk = 1:len
k = ig0(kk);
ml(k) = log(abs(det(eye(blkLenList(k)) + A{k}*S{k}))) ...
- trace(real(Q{k}'/(eye(blkLenList(k)) + A{k}*S{k})*A{k}*Q{k}));
end
[~,index] = min(ml);
gamma = theta(index);
Am{index} = A{index}; % Am -> record the past value of A
if verbose, fprintf(1,'ADD,\t idx=%3d, GAMMA_OP=%f\n',index,gamma); end
% 3. update quantities (Sig,Mu,S,Q,Phiu)
Sigma_ii = (eye(blkLenList(index))/Am{index} + S{index})\eye(blkLenList(index));
Sig = Sigma_ii;
Mu = Sigma_ii*Q{index};
% The relevent block basis
Phiu = Phi{index};
for k = 1 : p
Phi_k = Phi{k};
S{k} = S{k} - beta^2.*Phi_k'*(Phiu*Sigma_ii*Phiu')*Phi_k;
Q{k} = Q{k} - beta .*Phi_k'*Phiu*Mu;
end
% system parameter
ML=zeros(max_it,1);
for count = 1:max_it
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
localLoc = 1;
for i = 1 : length(index);
k = index(i);
localLen = blkLenList(k);
localSeg{i} = localLoc:1:localLoc + localLen - 1;
localLoc = localLoc + localLen;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% pre-process steps if we want to learn the intra-block-correlation
% learnType == 2 : calculate the mean of r_i
if learnType == 2
len = length(index); r = zeros(len,1);
for i = 1 : len
seg = localSeg{i};
Sigma_ii = Sig(seg,seg);
Mu_i = Mu(seg);
[~,r(i)] = learnB(Sigma_ii,Mu_i,gamma(i));
end
r_hat = mean(r); % mean or max
BT = genB(r_hat,maxLen);
end
% calculate s,q
for k = 1 : p
which = find(index==k,1);
if isempty(which) % the k-th basis is not included
s{k} = S{k};
q{k} = Q{k};
else % the k-th basis is calculated
invDenom = (eye(blkLenList(k)) - S{k}*Am{k})\eye(blkLenList(k));
s{k} = invDenom*S{k};
q{k} = invDenom*Q{k};
end
% learnType ==>> [0,1,2]
A{k} = (s{k})\(q{k}*q{k}' - s{k})/(s{k});
theta(k) = 1/blkLenList(k) * real(trace(A{k}));
if learnType == 0 % [0] without intra-correlation
A{k} = eye(blkLenList(k))*theta(k);
elseif learnType == 1 % [1] with individual intra corr
rr = mean(diag(A{k},1))/mean(diag(A{k}));
if abs(rr)>0.95, rr = 0.95*sign(rr); end
Bc = genB(rr,blkLenList(k));
A{k} = Bc*theta(k);
elseif learnType == 2 % [2] with unified intra corr
if equalSize
Bc = BT;
else
Bc = genB(r_hat,blkLenList(k));
end
A{k} = Bc.*theta(k);
end
end
% choice the next basis that [minimizes] the cost function
ml = inf*ones(1,p);
ig0 = find(theta>0);
% index for re-estimate
[ire,~,which] = intersect(ig0,index);
if ~isempty(ire)
len = length(which);
for kk = 1:len
k = ire(kk);
ml(k) = log(abs(det(eye(blkLenList(k)) + A{k}*s{k}))) ...
-trace(real(q{k}'/(eye(blkLenList(k)) + A{k}*s{k})*A{k}*q{k})) ...
-(log(abs(det(eye(blkLenList(k))+ Am{k}*s{k}))) ...
-trace(real(q{k}'/(eye(blkLenList(k)) + Am{k}*s{k})*Am{k}*q{k})));
end
end
% index for adding
iad = setdiff(ig0,ire);
if ~isempty(iad)
len = length(iad);
for kk = 1:len
k = iad(kk);
ml(k) = log(abs(det(eye(blkLenList(k)) + A{k}*s{k}))) ...
-trace(real(q{k}'/(eye(blkLenList(k)) + A{k}*s{k})*A{k}*q{k}));
end
end
% index for deleting
is0 = setdiff((1:p),ig0);
[ide,~,which] = intersect(is0,index);
if ~isempty(ide)
len = length(which);
for kk = 1:len
k = ide(kk);
ml(k) = -(log(abs(det(eye(blkLenList(k)) + Am{k}*s{k}))) ...
-trace(real(q{k}'/(eye(blkLenList(k)) + Am{k}*s{k})*Am{k}*q{k})));
end
end
% as we are minimizing the cost function :
[ML(count),idx] = min(ml);
% check if terminates?
if ML(count)>=0, break; end
if count > 2 && abs(ML(count)-ML(count-1)) < abs(ML(count)-ML(1))*eta, break; end
% update block gammas
which = find(index==idx);
% processing the quantities update
if ~isempty(which) % the select basis is already in the *LIST*
seg = localSeg{which};
Sig_j = Sig(:,seg);
Sig_jj = Sig(seg,seg);
if theta(idx)>0
%%%% re-estimate %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if verbose,fprintf(1,'REE,\t idx=%3d, GAMMA_OP=%f\n',idx,theta(idx));end
gamma_new = theta(idx);
ki = Sig_j/(Sig_jj + Am{idx}/(Am{idx} - A{idx})*A{idx})*Sig_j';
Sig = Sig - ki;
Mu = Mu - beta.*ki*Phiu'*y;
PKP = Phiu*ki*Phiu';
for k = 1 : p
Phi_m = Phi{k};
PPKP = Phi_m'*PKP;
S{k} = S{k} + beta^2.*PPKP*Phi_m;
Q{k} = Q{k} + beta^2.*PPKP*y;
end
%
gamma(which) = gamma_new; % 1
Am{idx} = A{idx}; % 2
else
%%%% delete %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if verbose,fprintf(1,'DEL,\t idx=%3d, GAMMA_OP=%f\n',idx,gamma(which));end
if length(index)==1, break; end % we are deleting the only one
ki = Sig_j/Sig_jj*Sig_j';
Sig = Sig - ki;
Mu = Mu - beta.*ki*Phiu'*y;
PKP = Phiu*ki*Phiu';
for k = 1 : p
Phi_m = Phi{k};
PPKP = Phi_m'*PKP;
S{k} = S{k} + beta^2.*PPKP*Phi_m;
Q{k} = Q{k} + beta^2.*PPKP*y;
end
% delete relevant basis and block
index(which) = [];
Mu(seg,:) = [];
Sig(:,seg) = [];
Sig(seg,:) = [];
Phiu(:,seg) = [];
%
gamma(which) = []; % 1
Am{idx} = []; % 2
end
else
if theta(idx)>0
%%%% add %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if verbose,fprintf(1,'ADD,\t idx=%3d, GAMMA_OP=%f\n',idx,theta(idx));end
gamma_new = theta(idx);
Phi_j = Phi{idx};
%
Sigma_ii = (eye(blkLenList(idx))+A{idx}*S{idx})\A{idx};
mu_i = Sigma_ii*Q{idx};
SPP = Sig*Phiu'*Phi_j; % common
Sigma_11 = Sig + beta^2.*SPP*Sigma_ii*SPP';
Sigma_12 = -beta.*SPP*Sigma_ii;
Sigma_21 = Sigma_12';
mu_1 = Mu - beta.*SPP*mu_i;
e_i = Phi_j - beta.*Phiu*SPP;
ESE = e_i*Sigma_ii*e_i';
for k = 1 : p
Phi_m = Phi{k};
S{k} = S{k} - beta^2.*Phi_m'*ESE*Phi_m;
Q{k} = Q{k} - beta.*Phi_m'*e_i*mu_i;
end
% adding relevant basis
Sig = [Sigma_11 Sigma_12; ...
Sigma_21 Sigma_ii];
Mu = [mu_1; ...
mu_i];
Phiu = [Phiu Phi_j];
index = [index;idx];
gamma = [gamma;gamma_new]; % 1
Am{idx} = A{idx}; % 2
else
break; % null operation
end
end
end
% format the output ===> X the signal
weights = zeros(M,T);
formatSeg = [currentSeg{index}];
weights(formatSeg,:) = Mu;
if (scl < 0.4) || (scl > 1)
Result.x = weights * scl/0.4;
else
Result.x = weights;
end
Result.r = 1.0; % lazy ...
Result.gamma_used = index;
Result.gamma_est = gamma;
Result.count = count;
Result.lambda = sigma2;
% END %
%% sub-functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunctions of estimating the AR(1) coefficient r and
% reconstruction the covariance matrix with B^{-1} valid
function [B,r] = learnB(Sig,Mu,gamma)
len = length(Mu);
B = (Sig + Mu*Mu')./gamma;
r = (mean(diag(B,1))/mean(diag(B)));
if abs(r) >= 0.95, r = 0.95*sign(r); end;
B = genB(r,len);
% generate B according to r,len
% NOTE: abs(r) should be less than 1.0
function B = genB(r,len)
jup = 0:len-1;
bs = r.^jup;
B = toeplitz(bs);
% generate temporal Smooth matrix
% NOTE: current does not handle L
function B = temporalSmooth(a,b,~,len)
A1 = b.*eye(len);
A2 = (a*b).*[zeros(1,len-1) 0; eye(len-1), zeros(len-1,1)];
Bc = A1 + A2;
B = Bc*Bc';