-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
483 lines (434 loc) · 18.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# utility files for testing
# @author: tian gao
import numpy as np
import scipy.linalg as slin
import scipy.sparse as sp
import networkx as nx
import pandas as pd
from pandas import ExcelWriter
from pandas import ExcelFile
import os
from scipy.special import expit as sigmoid
import glob
import re
import uuid
import pickle
import math
import logging
def dump(obj, exp_path, name, txt=False):
if not txt:
with open(os.path.join(exp_path, name + ".pkl"), "wb") as f:
pickle.dump(obj, f)
else:
with open(os.path.join(exp_path, name + ".txt"), "w") as f:
f.write(str(obj))
def load(exp_path, name):
with open(os.path.join(exp_path, name), "rb") as f:
obj = pickle.load(f)
return obj
def np_to_csv(array, save_path):
"""
Convert np array to .csv
array: numpy array
the numpy array to convert to csv
save_path: str
where to temporarily save the csv
Return the path to the csv file
"""
id = str(uuid.uuid4())
output = os.path.join(os.path.dirname(save_path), 'tmp_' + id + '.csv')
df = pd.DataFrame(array)
df.to_csv(output, header=False, index=False)
return output
def setup_logger( mode = 'debug'):
if mode == 'debug':
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('fly')
return logger
def simulate_random_dag(d: int,
degree: float,
graph_type: str,
w_range: tuple = (0.5, 2.0)) -> nx.DiGraph:
"""Simulate random DAG with some expected degree.
Args:
d: number of nodes
degree: expected node degree, in + out
graph_type: {erdos-renyi, barabasi-albert, full}
w_range: weight range +/- (low, high)
Returns:
G: weighted DAG
"""
if graph_type == 'erdos-renyi':
prob = float(degree) / (d - 1)
B = np.tril((np.random.rand(d, d) < prob).astype(float), k=-1)
elif graph_type == 'barabasi-albert':
m = int(round(degree / 2))
B = np.zeros([d, d])
bag = [0]
for ii in range(1, d):
dest = np.random.choice(bag, size=m)
for jj in dest:
B[ii, jj] = 1
bag.append(ii)
bag.extend(dest)
elif graph_type == 'full': # ignore degree, only for experimental use
B = np.tril(np.ones([d, d]), k=-1)
elif graph_type == 'chain': # ignore degree, only for experimental use
B = np.zeros([d, d])
B[np.arange(d-1), np.arange(d-1)+1] = 1
else:
raise ValueError('unknown graph type')
# random permutation
P = np.random.permutation(np.eye(d, d)) # permutes first axis only
B_perm = P.T.dot(B).dot(P)
U = np.random.uniform(low=w_range[0], high=w_range[1], size=[d, d])
U[np.random.rand(d, d) < 0.5] *= -1
W = (B_perm != 0).astype(float) * U
G = nx.DiGraph(W)
return G
def simulate_sem_nonlinear(G: nx.DiGraph,
n: int,
x_dims: int,
sem_type: str,
linear_type: str,
noise_scale: float = 1.0) -> np.ndarray:
"""Simulate samples from SEM with specified type of noise.
Args:
G: weigthed DAG
n: number of samples
sem_type: {linear-gauss,linear-exp,linear-gumbel}
noise_scale: scale parameter of noise distribution in linear SEM
Returns:
X: [n,d] sample matrix
"""
W = nx.to_numpy_array(G)
d = W.shape[0]
X = np.zeros([n, d, x_dims])
ordered_vertices = list(nx.topological_sort(G))
# topW = np.copy(W)
# topW[topW < 0.] = 0
# ordered_vertices = list(nx.topological_sort(nx.DiGraph(topW)))
assert len(ordered_vertices) == d
for j in ordered_vertices:
parents = list(G.predecessors(j))
if linear_type == 'linear':
eta = X[:, parents, 0].dot(W[parents, j])
elif linear_type == 'nonlinear_1':
eta = np.cos(X[:, parents, 0] + 1).dot(W[parents, j])
elif linear_type == 'nonlinear_2':
eta = (X[:, parents, 0]+0.5).dot(W[parents, j])
else:
raise ValueError('unknown linear data type')
if sem_type == 'linear-gauss':
if linear_type == 'linear':
X[:, j, 0] = eta + np.random.normal(scale=noise_scale, size=n)
elif linear_type == 'nonlinear_1':
X[:, j, 0] = eta + np.random.normal(scale=noise_scale, size=n)
elif linear_type == 'nonlinear_2':
X[:, j, 0] = 2.*np.sin(eta) + eta + np.random.normal(scale=noise_scale, size=n)
elif sem_type == 'linear-exp':
if linear_type == 'linear':
X[:, j, 0] = eta + np.random.exponential(scale=noise_scale, size=n)
elif linear_type == 'nonlinear_1':
X[:, j, 0] = eta + np.random.exponential(scale=noise_scale, size=n)
elif linear_type == 'nonlinear_2':
X[:, j, 0] = 2.*np.sin(eta) + eta + np.random.exponential(scale=noise_scale, size=n)
elif sem_type == 'linear-gumbel':
X[:, j, 0] = eta + np.random.gumbel(scale=noise_scale, size=n)
else:
raise ValueError('unknown sem type')
if x_dims > 1 :
for i in range(x_dims-1):
X[:, :, i+1] = np.random.normal(scale=noise_scale, size=1)*X[:, :, 0] + np.random.normal(scale=noise_scale, size=1) + np.random.normal(scale=noise_scale, size=(n, d))
X[:, :, 0] = np.random.normal(scale=noise_scale, size=1) * X[:, :, 0] + np.random.normal(scale=noise_scale, size=1) + np.random.normal(scale=noise_scale, size=(n, d))
return X
def simulate_sem(G: nx.DiGraph,
n: int,
sem_type: str,
noise_scale: float = 1.0) -> np.ndarray:
"""Simulate samples from SEM with specified type of noise.
Args:
G: weigthed DAG
n: number of samples
sem_type: {linear-gauss,linear-exp,linear-gumbel}
noise_scale: scale parameter of noise distribution in linear SEM
Returns:
X: [n,d] sample matrix
"""
W = nx.to_numpy_array(G)
d = W.shape[0]
X = np.zeros([n, d])
ordered_vertices = list(nx.topological_sort(G))
assert len(ordered_vertices) == d
for j in ordered_vertices:
parents = list(G.predecessors(j))
#eta = np.cos(X[:, parents]+1.).dot(W[parents, j]) # [n,]
eta = (X[:, parents]).dot(W[parents, j])
if sem_type == 'linear-gauss':
X[:, j] = eta + np.random.normal(scale=noise_scale, size=n)
elif sem_type == 'linear-exp':
X[:, j] = eta + np.random.exponential(scale=noise_scale, size=n)
elif sem_type == 'linear-gumbel':
X[:, j] = eta + np.random.gumbel(scale=noise_scale, size=n)
else:
raise ValueError('unknown sem type')
return X
def simulate_sem_multid(G: nx.DiGraph,
n: int,
x_dims: int,
sem_type: str,
noise_scale: float = 1.0) -> np.ndarray:
"""Simulate samples from SEM with specified type of noise.
Args:
G: weigthed DAG
n: number of samples
sem_type: {linear-gauss,linear-exp,linear-gumbel}
noise_scale: scale parameter of noise distribution in linear SEM
Returns:
X: [n,d] sample matrix
"""
W = nx.to_numpy_array(G)
d = W.shape[0]
X = np.zeros([n, d, x_dims])
ordered_vertices = list(nx.topological_sort(G))
assert len(ordered_vertices) == d
for j in ordered_vertices:
parents = list(G.predecessors(j))
# eta = (np.sin(X[:, parents])+1.).dot(W[parents, j]) # [n,]
eta = X[:, parents, 0].dot(W[parents, j])
if sem_type == 'linear-gauss':
X[:, j, 0] = eta + np.random.normal(scale=noise_scale, size=n)
elif sem_type == 'linear-exp':
X[:, j, 0] = eta + np.random.exponential(scale=noise_scale, size=n)
elif sem_type == 'linear-gumbel':
X[:, j, 0] = eta + np.random.gumbel(scale=noise_scale, size=n)
else:
raise ValueError('unknown sem type')
for i in range(x_dims-1):
X[:, :, i+1] = np.random.normal(scale=noise_scale, size=1)*X[:, :, 0] + np.random.normal(scale=noise_scale, size=1) + np.random.normal(scale=noise_scale, size=(n, d))
X[:, :, 0] = np.random.normal(scale=noise_scale, size=1) * X[:, :, 0] + np.random.normal(scale=noise_scale, size=1) + np.random.normal(scale=noise_scale, size=(n, d))
# for j in ordered_vertices:
# parents = list(G.predecessors(j))
# eta = X[:, parents, i].dot(W[parents, j])
# if sem_type == 'linear-gauss':
# X[:, j, i] = eta + np.random.normal(scale=noise_scale, size=n)
# elif sem_type == 'linear-exp':
# X[:, j, i] = eta + np.random.exponential(scale=noise_scale, size=n)
# elif sem_type == 'linear-gumbel':
# X[:, j, i] = eta + np.random.gumbel(scale=noise_scale, size=n)
# else:
# raise ValueError('unknown sem type')
return X
def count_accuracy(G_true: nx.DiGraph,
G: nx.DiGraph,
G_und: nx.DiGraph = None) -> tuple:
"""Compute FDR, TPR, and FPR for B, or optionally for CPDAG B + B_und.
Args:
G_true: ground truth graph
G: predicted graph
G_und: predicted undirected edges in CPDAG, asymmetric
Returns:
fdr: (reverse + false positive) / prediction positive
tpr: (true positive) / condition positive
fpr: (reverse + false positive) / condition negative
shd: undirected extra + undirected missing + reverse
nnz: prediction positive
"""
B_true = nx.to_numpy_array(G_true) != 0
B = nx.to_numpy_array(G) != 0
B_und = None if G_und is None else nx.to_numpy_array(G_und)
d = B.shape[0]
# linear index of nonzeros
if B_und is not None:
pred_und = np.flatnonzero(B_und)
pred = np.flatnonzero(B)
cond = np.flatnonzero(B_true)
cond_reversed = np.flatnonzero(B_true.T)
cond_skeleton = np.concatenate([cond, cond_reversed])
# true pos
true_pos = np.intersect1d(pred, cond, assume_unique=True)
if B_und is not None:
# treat undirected edge favorably
true_pos_und = np.intersect1d(pred_und, cond_skeleton, assume_unique=True)
true_pos = np.concatenate([true_pos, true_pos_und])
# false pos
false_pos = np.setdiff1d(pred, cond_skeleton, assume_unique=True)
if B_und is not None:
false_pos_und = np.setdiff1d(pred_und, cond_skeleton, assume_unique=True)
false_pos = np.concatenate([false_pos, false_pos_und])
# reverse
extra = np.setdiff1d(pred, cond, assume_unique=True)
reverse = np.intersect1d(extra, cond_reversed, assume_unique=True)
# compute ratio
pred_size = len(pred)
if B_und is not None:
pred_size += len(pred_und)
cond_neg_size = 0.5 * d * (d - 1) - len(cond)
fdr = float(len(reverse) + len(false_pos)) / max(pred_size, 1)
tpr = float(len(true_pos)) / max(len(cond), 1)
fpr = float(len(reverse) + len(false_pos)) / max(cond_neg_size, 1)
# structural hamming distance
B_lower = np.tril(B + B.T)
if B_und is not None:
B_lower += np.tril(B_und + B_und.T)
pred_lower = np.flatnonzero(B_lower)
cond_lower = np.flatnonzero(np.tril(B_true + B_true.T))
extra_lower = np.setdiff1d(pred_lower, cond_lower, assume_unique=True)
missing_lower = np.setdiff1d(cond_lower, pred_lower, assume_unique=True)
shd = len(extra_lower) + len(missing_lower) + len(reverse)
# print('extra %f + missing %f + reverse %f' % ( len(extra_lower), len(missing_lower), len(reverse)))
return fdr, tpr, fpr, shd, pred_size #, len(extra_lower), len(missing_lower), len(reverse)
def count_accuracy_new(G_true: nx.DiGraph,
G: nx.DiGraph,
G_und: nx.DiGraph = None) -> tuple:
"""Compute FDR, TPR, and FPR for B, or optionally for CPDAG B + B_und.
Args:
G_true: ground truth graph
G: predicted graph
G_und: predicted undirected edges in CPDAG, asymmetric
Returns:
fdr: (reverse + false positive) / prediction positive
tpr: (true positive) / condition positive
fpr: (reverse + false positive) / condition negative
shd: undirected extra + undirected missing + reverse
nnz: prediction positive
"""
B_true = nx.to_numpy_array(G_true) != 0
B = nx.to_numpy_array(G) != 0
B_und = None if G_und is None else nx.to_numpy_array(G_und)
d = B.shape[0]
# linear index of nonzeros
if B_und is not None:
pred_und = np.flatnonzero(B_und)
pred = np.flatnonzero(B)
cond = np.flatnonzero(B_true)
cond_reversed = np.flatnonzero(B_true.T)
cond_skeleton = np.concatenate([cond, cond_reversed])
# true pos
true_pos = np.intersect1d(pred, cond, assume_unique=True)
if B_und is not None:
# treat undirected edge favorably
true_pos_und = np.intersect1d(pred_und, cond_skeleton, assume_unique=True)
true_pos = np.concatenate([true_pos, true_pos_und])
# false pos
false_pos = np.setdiff1d(pred, cond_skeleton, assume_unique=True)
if B_und is not None:
false_pos_und = np.setdiff1d(pred_und, cond_skeleton, assume_unique=True)
false_pos = np.concatenate([false_pos, false_pos_und])
# reverse
extra = np.setdiff1d(pred, cond, assume_unique=True)
reverse = np.intersect1d(extra, cond_reversed, assume_unique=True)
# compute ratio
pred_size = len(pred)
if B_und is not None:
pred_size += len(pred_und)
cond_neg_size = 0.5 * d * (d - 1) - len(cond)
fdr = float(len(reverse) + len(false_pos)) / max(pred_size, 1)
tpr = float(len(true_pos)) / max(len(cond), 1)
fpr = float(len(reverse) + len(false_pos)) / max(cond_neg_size, 1)
# structural hamming distance
B_lower = np.tril(B + B.T)
if B_und is not None:
B_lower += np.tril(B_und + B_und.T)
pred_lower = np.flatnonzero(B_lower)
cond_lower = np.flatnonzero(np.tril(B_true + B_true.T))
extra_lower = np.setdiff1d(pred_lower, cond_lower, assume_unique=True)
missing_lower = np.setdiff1d(cond_lower, pred_lower, assume_unique=True)
shd = len(extra_lower) + len(missing_lower) + len(reverse)
print('extra %f + missing %f + reverse %f' % ( len(extra_lower), len(missing_lower), len(reverse)))
return fdr, tpr, fpr, shd, pred_size, len(extra_lower), len(missing_lower), len(reverse)
def get_loss_L2(W, X, loss_type = 'l2'):
"""Evaluate value and gradient of loss."""
M = X @ W
# loss_type = self.loss_type
if loss_type == 'l2':
R = X - M
loss = 0.5 / X.shape[0] * (R ** 2).sum()
G_loss = - 1.0 / X.shape[0] * X.T @ R
elif loss_type == 'logistic':
loss = 1.0 / X.shape[0] * (np.logaddexp(0, M) - X * M).sum()
G_loss = 1.0 / X.shape[0] * X.T @ (sigmoid(M) - X)
elif loss_type == 'poisson':
S = np.exp(M)
loss = 1.0 / X.shape[0] * (S - X * M).sum()
G_loss = 1.0 / X.shape[0] * X.T @ (S - X)
else:
raise ValueError('unknown loss type')
return loss, G_loss
def print_to_file(args,
result_time,
result_shd,
result_nnz,
result_tpr,
result_fpr,
result_fdr,
result_h,
result_loss,
result_extra,
result_missing,
result_reverse,
search_result = 0,
repeat_num = 100
):
search_string = ['', '_search', '_searchNT', '_searchINP']
nonzero_string = ['_nonZero', '_zeroM']
pre_use_l2_string = ['_zeroInit', '_notearInit']
method_info = str(repeat_num) + args.methods + search_string[search_result] + '_'+ str(args.data_variable_size) + \
'_' + args.data_type + '_' + str(args.data_sample_size) + '_' +\
str(args.graph_type) + '_' + str(args.graph_sem_type) + \
'_' + str(args.graph_degree) + '_hTol_' + str(args.h_tol) + \
'_lambda_' + str(args.lambda1) + '_' + str(args.lambda2)
output_file_name = os.path.join('results', method_info)
f = open(output_file_name + '.txt', 'w')
f.write(method_info + '\n')
# f.write(args)
print(args, file=f)
n = math.sqrt(repeat_num)
print_string = 'Mean Time: ' + str(np.mean(result_time)) + '; std +-' \
+ str(np.std(result_time).item()/n)
f.write(print_string + '\n')
print_string = 'Mean loss: ' + str(np.mean(result_loss)) + '; std +-' \
+ str(np.std(result_loss).item()/n)
f.write(print_string + '\n')
print_string = 'Mean SHD: ' + str(np.mean(result_shd)) + '; std +-' \
+ str(np.std(result_shd).item()/n)
f.write(print_string + '\n')
print_string = 'Mean nnz: ' + str(np.mean(result_nnz)) + '; std +-' \
+ str(np.std(result_nnz).item()/n)
print_string = 'Mean tpr: ' + str(np.mean(result_tpr)) + '; std +-' \
+ str(np.std(result_tpr).item() / n)
print_string = 'Mean fpr: ' + str(np.mean(result_fpr)) + '; std +-' \
+ str(np.std(result_fpr).item() / n)
print_string = 'Mean fdr: ' + str(np.mean(result_fdr)) + '; std +-' \
+ str(np.std(result_fdr).item() / n)
f.write(print_string + '\n')
# print_string = 'Mean Time: ' + str(np.mean(result_fdr)) + '; std +-' \
# + str(np.std(result_fdr).item())
# f.write(print_string + '\n')
print_string = 'Mean h(A): ' + str(np.mean(result_h)) + '; std +-' \
+ str(np.std(result_h).item()/n)
f.write(print_string + '\n')
print_string = 'Mean extra edge: ' + str(np.mean(result_extra)) + '; std +-' \
+ str(np.std(result_extra).item()/n)
f.write(print_string + '\n')
print_string = 'Mean missing edge: ' + str(np.mean(result_missing)) + '; std +-' \
+ str(np.std(result_missing).item()/n)
f.write(print_string + '\n')
print_string = 'Mean reverse edge: ' + str(np.mean(result_reverse)) + '; std +-' \
+ str(np.std(result_reverse).item()/n)
f.write(print_string + '\n')
f.write( '&'+ str(np.mean(result_shd).item())+ ' $\pm$' + str(np.std(result_shd).item()/n) +
' & '+ str(np.mean(result_nnz).item()) + '$\pm$' + str(np.std(result_nnz).item()/n) +
' & ' + str(np.mean(result_time).item()) + '$\pm$' + str(np.std(result_time).item()/n) )
f.write('\n')
f.close()
# Save DataFrame of all results
df = np.hstack((result_time, result_loss, result_shd, result_nnz,
result_tpr, result_fpr, result_fdr,
result_h, result_extra, result_missing, result_reverse))
df = pd.DataFrame(df, columns=['time','lossW', 'SHD', 'nnz',
'tpr', 'fpr', 'fdr',
'h', 'extra', 'missing', 'reverse'])
df.to_pickle(output_file_name + '.pkl')