-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
100 lines (75 loc) · 4.15 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# here put the import lib
import copy
import os
import pickle
import numpy as np
from utils.utils import read_jsonlines, multi_label_metric, ddi_rate_score, multi_test
from generators.data import Voc, EHRTokenizer
def evaluate_jsonlines(data_path, ehr_tokenizer, threshold=0.5, ddi_path='./data/mimic4/handled/'):
pred_data_prob, pred_data = [], []
true_data = np.zeros((len(read_jsonlines(data_path)), len(ehr_tokenizer.med_voc.word2idx)))
seq_len = []
pred_label = []
for row, meta_data in enumerate(read_jsonlines(data_path)):
# noramlize the predicted scores by sigmoid, and get the prob
meta_pred_data_prob = np.array(meta_data["target"])
pred_data_prob.append(np_sigmoid(meta_pred_data_prob))
# transform y to 0-1 by threshold
meta_pred_data = copy.deepcopy(np_sigmoid(meta_pred_data_prob))
meta_pred_data[meta_pred_data>=threshold] = 1
meta_pred_data[meta_pred_data<threshold] = 0
pred_data.append(meta_pred_data)
# get the true data
true_index = ehr_tokenizer.convert_med_tokens_to_ids(meta_data["drug_code"])
true_data[row][true_index] = 1
seq_len.append(int(meta_data["input"].split("The patient has ")[1].split(" times ICU visits.")[0]))
# prepare the labels for DDI calculation
meta_label = np.where(meta_pred_data == 1)[0]
pred_label.append([sorted(meta_label)])
ja, prauc, avg_p, avg_r, avg_f1, mean, std = multi_label_metric(true_data,
np.array(pred_data),
np.array(pred_data_prob))
ddi_adj = pickle.load(open(os.path.join(ddi_path, 'ddi_A_final.pkl'), 'rb'))
ddi = ddi_rate_score(pred_label, ddi_adj)
print('\nJaccard: {:.4}, PRAUC: {:.4}, AVG_PRC: {:.4}, AVG_RECALL: {:.4}, AVG_F1: {:.4}, DDI_rate: {:.4}\n'.format(
ja, prauc, avg_p, avg_r, avg_f1, ddi
))
print("10-rounds PRAUC: %.5f + %.5f" % (mean[0], std[0]))
print("10-rounds Jaccard: %.5f + %.5f" % (mean[1], std[1]))
print("10-rounds F1-score: %.5f + %.5f" % (mean[2], std[2]))
seq_len = np.array(seq_len)
pred_data = np.array(pred_data)
pred_data_prob = np.array(pred_data_prob)
single_index = (seq_len == 0)
multi_index = (seq_len >= 1)
acc_container = {}
s_ja, s_prauc, s_avg_p, s_avg_r, s_avg_f1, s_mean, s_std = multi_label_metric(true_data[single_index],
pred_data[single_index],
pred_data_prob[single_index])
m_ja, m_prauc, m_avg_p, m_avg_r, m_avg_f1, m_mean, m_std = multi_label_metric(true_data[multi_index],
pred_data[multi_index],
pred_data_prob[multi_index])
acc_container['single-jaccard'] = s_ja
acc_container['single-f1'] = s_avg_f1
acc_container['single-prauc'] = s_prauc
acc_container['multiple-jaccard'] = m_ja
acc_container['multiple-f1'] = m_avg_f1
acc_container['multiple-prauc'] = m_prauc
for k, v in acc_container.items():
print('%-10s : %-10.4f' % (k, v))
print("Single-visit 10-rounds PRAUC: %.5f + %.5f" % (s_mean[0], s_std[0]))
print("Single-vist 10-rounds Jaccard: %.5f + %.5f" % (s_mean[1], s_std[1]))
print("Single-visit 10-rounds F1-score: %.5f + %.5f" % (s_mean[2], s_std[2]))
print("Multi-visit 10-rounds PRAUC: %.5f + %.5f" % (m_mean[0], m_std[0]))
print("Multi-vist 10-rounds Jaccard: %.5f + %.5f" % (m_mean[1], m_std[1]))
print("Multi-visit 10-rounds F1-score: %.5f + %.5f" % (m_mean[2], m_std[2]))
return ja, prauc, avg_p, avg_r, avg_f1
def np_sigmoid(x):
# sigmoid function using numpy
return 1 / (1+np.exp(-x))
if __name__ == "__main__":
# load diag, proc, med word2id tokenizer
voc_dir = "data/mimic3/handled/voc_final.pkl"
ehr_tokenizer = EHRTokenizer(voc_dir)
pred_path = "./results/0105/test_predictions.json"
evaluate_jsonlines(pred_path, ehr_tokenizer, threshold=0.16)