-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsimple_anatomy_loss.py
109 lines (89 loc) · 4.09 KB
/
simple_anatomy_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from math import pi
import numpy as np
import open3d as o3d
import torch
import tqdm
from manotorch.axislayer import AxisAdaptiveLayer, AxisLayerFK
from manotorch.anatomy_loss import AnatomyConstraintLossEE
from manotorch.manolayer import ManoLayer, MANOOutput
from manotorch.utils.visutils import VizContext, create_coord_system_can
def main():
viz_ctx = VizContext(non_block=True)
viz_ctx.init()
geometry_to_viz = dict(
hand_mesh_init=None,
hand_mesh_curr=None,
axis=None,
coord_system_list=None,
)
mano_layer = ManoLayer(rot_mode="axisang",
center_idx=9,
mano_assets_root="assets/mano",
use_pca=False,
side="right",
flat_hand_mean=True)
hand_faces = mano_layer.th_faces # (NF, 3)
axisFK = AxisLayerFK(side=mano_layer.side,mano_assets_root="assets/mano")
anatomyLoss = AnatomyConstraintLossEE()
anatomyLoss.setup()
# constructing the initial bending index fingers
global_aa = torch.zeros((1, 1, 3))
composed_ee = torch.zeros((1, 16, 3))
# transform order of right hand
# 15-14-13-\
# \
# 3-- 2 -- 1 -----0 < NOTE: demo on this finger
# 6 -- 5 -- 4 ----/
# 12 - 11 - 10 --/
# 9-- 8 -- 7 --/
composed_ee[:, 1] = torch.tensor([0, 0, -pi / 3]).unsqueeze(0)
composed_ee[:, 2] = torch.tensor([pi / 3, 0, -pi / 3]).unsqueeze(0)
composed_ee[:, 3] = torch.tensor([0, pi / 3, -pi / 3]).unsqueeze(0)
composed_aa = axisFK.compose(composed_ee)[:, 1:, :].clone() # (B, 15, 3)
composed_aa.requires_grad_(True)
zero_shape = torch.zeros((1, 10))
param = []
param.append({"params": [composed_aa]})
optimizer = torch.optim.Adam(param, lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=500, gamma=0.5)
proc_bar = tqdm.tqdm(range(5000))
for i, _ in enumerate(proc_bar):
curr_pose = torch.cat([global_aa, composed_aa], dim=1).reshape(1, -1)
mano_output: MANOOutput = mano_layer(curr_pose, zero_shape)
hand_verts_curr = mano_output.verts
T_g_p = mano_output.transforms_abs # (B, 16, 4, 4)
T_g_a, R, ee = axisFK(T_g_p) # ee (B, 16, 3)
loss = anatomyLoss(ee)
proc_bar.set_description(f"ee loss: {loss.item():.5f}")
loss.backward()
optimizer.step()
scheduler.step()
# ===== draw hand curr >>>>>
if i % 10 == 0:
if geometry_to_viz["coord_system_list"] is not None:
viz_ctx.remove_geometry_list(geometry_to_viz["coord_system_list"])
coord_system_list = []
for i in range(T_g_a.shape[1]):
if i in [1, 2, 3]: # NOTE: show axes of index finger.
coord_system_list += create_coord_system_can(scale=0.7, transf=T_g_a[0, i].detach().cpu().numpy())
viz_ctx.add_geometry_list(coord_system_list)
geometry_to_viz["coord_system_list"] = coord_system_list
if geometry_to_viz.get('hand_mesh_curr', None) is None:
o3d_hand_mesh_curr = o3d.geometry.TriangleMesh()
o3d_hand_mesh_curr.triangles = o3d.utility.Vector3iVector(hand_faces.detach().cpu().numpy())
o3d_hand_mesh_curr.vertices = o3d.utility.Vector3dVector(hand_verts_curr[0].detach().cpu().numpy())
o3d_hand_mesh_curr.compute_vertex_normals()
o3d_hand_mesh_curr.compute_triangle_normals()
o3d_hand_mesh_curr.paint_uniform_color([0.9, 0.0, 0.0])
viz_ctx.add_geometry(o3d_hand_mesh_curr)
geometry_to_viz["hand_mesh_curr"] = o3d_hand_mesh_curr
else:
o3d_hand_mesh_curr = geometry_to_viz["hand_mesh_curr"]
o3d_hand_mesh_curr.vertices = o3d.utility.Vector3dVector(hand_verts_curr[0].detach().cpu().numpy())
o3d_hand_mesh_curr.compute_vertex_normals()
o3d_hand_mesh_curr.compute_triangle_normals()
viz_ctx.update_geometry(o3d_hand_mesh_curr)
# <<<<<
viz_ctx.step()
if __name__ == "__main__":
main()