forked from ckm-pro-bono/Donorschoose.org
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
255 lines (208 loc) · 8.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# coding: utf-8
# Setup
from datetime import date
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
import smtplib
import pandas as pd
import boto3
from lib.helpers import subset_df_by_id, resource_formatter, project_formatter, format_current_trends
from lib import TrendFinder as tf
from lib import overview_traces as ot
from lib import demo
from lib import geo as g
from lib import plot_formatters as pf
# Style for TrendFinder email
style = """
<style>
body {
font-family: "Georgia", sans-serif;
}
table {
border-collapse: collapse;
}
th, td {
padding: 3px;
text-align: left;
}
table, th, td {
border: 1px solid black;
font-family: Futura;
font-size: 12px;
font-weight: normal;
}
th {
background-color: #065331;
color: white;
}
</style>
"""
# By default, date is today
DATE = date.today().strftime("%Y-%m-%d")
# Hide pandas warnings
pd.options.mode.chained_assignment = None
# Configuration
# AWS initialization
#############################################################
# Credentials need to be set using awscli (see Directions). #
#############################################################
bucket = "donorschoose-trends" # S3 bucket name
client = boto3.client("s3")
s3 = boto3.resource("s3")
# Pipeline wrapper functions
# Overview (does subset_df at a time)
def build_overview(word, subset_df):
# Counts
metro_plot = ot.plot_by_metro(subset_df, word, plot=False)
income_plot = ot.plot_by_income(subset_df, word, plot=False)
subject_plot = ot.plot_by_subject(subset_df, word, plot=False)
grade_plot = ot.plot_by_grade(subset_df, word, plot=False)
pf.output_plot_data(word, metro_plot, 'plot_by_metro', DATE, bucket, client)
pf.output_plot_data(word, income_plot, 'plot_by_income', DATE, bucket, client)
pf.output_plot_data(word, subject_plot, 'plot_by_subject', DATE, bucket, client)
pf.output_plot_data(word, grade_plot, 'plot_by_grade', DATE, bucket, client)
# Proportions
metro_percent = ot.percent_by_metro(subset_df, word, plot=False)
income_percent = ot.percent_by_income(subset_df, word, plot=False)
subject_percent = ot.percent_by_subject(subset_df, word, plot=False)
grade_percent = ot.percent_by_grade(subset_df, word, plot=False)
pf.output_plot_data(word, metro_percent, 'percent_by_metro', DATE, bucket, client)
pf.output_plot_data(word, income_percent, 'percent_by_income', DATE, bucket, client)
pf.output_plot_data(word, subject_percent, 'percent_by_subject', DATE, bucket, client)
pf.output_plot_data(word, grade_percent, 'percent_by_grade', DATE, bucket, client)
# Demographics (does all at once, depends on projects and keyword_ids_dict)
def build_demo():
cor = demo.Correlator(projects)
cor.find_trends(keywords_dict = keyword_ids_dict)
# Default time_interval = 1M
cor.get_categorical_trends(trend_keywords, prop=False, thres=-1)
# Test stationarity assumptions
cor.stationarize()
cor.stationarity_test_all() # what passes this test is in .passed_trends
# Calculate correlations
cor.compare_corrs()
# Get trends that did not pass
# demo_not_passed = [word for word in trend_keywords if word not in cor.passed_trends]
features = [col for col in cor.df.columns if 'Bin' in col]
# Can only investigate trend features for trends that pass tests
for word in cor.passed_trends:
# Get list of sorted correlations
top_corrs = cor.top_corrs(word)
pf.output_table_data(word, top_corrs, "top_corrs", DATE, bucket, client, index=True)
# Correlator
trend_features_out = demo.plot_trend_features(cor.grouped, trend=word, passed_features = cor.passed_features, date_cutoff=trend_finder.current_start, plot=False)
pf.output_plot_data(word, trend_features_out, 'plot_trend_features', DATE, bucket, client)
for word in trend_keywords:
# Ratios
diffs = demo.compare_ratios(cor.df, cor.grouped, trend=word, features=features)
diffs_out = demo.plot_diffs(diffs, feat_type=['Poverty', 'Metro', 'Grade', 'Various'], plot=False)
pf.output_plot_data(word, diffs_out, 'plot_diffs', DATE, bucket, client)
# Google Trends
google_trends = demo.ggl_trends(cor.grouped, word)
ggl_trends_out = demo.plot_ggl_trends(google_trends, word, plot=False)
pf.output_plot_data(word, ggl_trends_out, 'plot_ggl_trends', DATE, bucket, client)
# Geo (does subset_df at a time)
def build_geo(word, subset_df):
geo = g.GeoMeta(subset_df)
# Build all splits
geo.get_all_splits()
# For sorting dropdown of splits
trendiest = geo.find_trendiest(as_df=True)
pf.output_table_data(word, trendiest, "geo_splits", DATE, bucket, client, index=True)
# Plot split vs. non-split over time
plot_splits_out = geo.plot_splits(word, plot=False)
pf.output_plot_data(word, plot_splits_out, 'plot_splits', DATE, bucket, client)
# Rolling
windows = [geo.ONE_MONTH, geo.THREE_MONTHS, geo.SIX_MONTHS, geo.ONE_YEAR]
for window in windows:
plot_rolling_out = geo.plot_rolling_splits(word, window=window, plot=False)
pf.output_plot_data(word, plot_rolling_out, 'plot_rolling_splits_{}'.format(window), DATE, bucket, client)
# Cumulative
plot_cumulative_out = geo.plot_cumulative_splits(word, plot=False)
pf.output_plot_data(word, plot_cumulative_out, 'plot_cumulative_splits', DATE, bucket, client)
# Detect trends
# Read in resources
#########################################################################################
# Expecting a .csv with Project ID, Project Posted Date, and Item Cleaned Resource Name #
#########################################################################################
resources = resource_formatter("/shared-files/csv/new_resources_only.csv")
# Create TrendFinder object
trend_finder = tf.TrendFinder(resources)
current_trends = trend_finder.find_current_trends()
# Save keywords to list
trend_keywords = list(current_trends["word"])
current_trends_table = format_current_trends(current_trends)
# Transition from resources to file structure
#############################
# Uncomment this if desired #
#############################
# del resources # For memory
# Email trends
email_trends = current_trends_table.to_html(index=False)
body = """
<p>Welcome to TrendFinder! Below are the trending keywords for the last two weeks.<br>
To view the dashboard, <a href='https://trendfinder.elasticbeanstalk.com'>click here!</a>
</p>
<br>
"""
# Create HTML of email
table_html = "<html>" + style + body + table + "</html>"
#############################
# Put email recipients here #
#############################
recipients = ['DC_USER@gmail.com']
# Create message information
msg = MIMEMultipart('alternative')
msg['Subject'] = "TrendFinder Dashboard"
msg['From'] = 'DC_USER@gmail.com'
msg['To'] = ','.join(recipients)
# Add message contents
email_table = MIMEText(table_html, 'html')
msg.attach(email_table)
# Initiate server and send email
################################################
# Fill in email configuration/credentials here #
################################################
server = smtplib.SMTP_SSL('smtp.gmail.com', 465) # SMTP port for sending email
server.login("DC_USER", "PASSWORD") # Fill this in
server.sendmail(
"DC_USER@gmail.com", # Put in origin email
recipients,
msg.as_string())
server.quit()
# Save trends
pf.output_table_data(trend=None, df=current_trends_table, table_name=None, prefix=DATE, bucket=bucket, s3_client=client, index=False)
# Build keyword-IDs dictionary
# Get dictionary of Project IDs per keyword
keyword_ids_dict = {}
for word in trend_keywords:
# DataFrame subset for low income
keyword_ids_dict[word] = trend_finder.subset_resources_by_query(word)["Project ID"].tolist()
# Investigate trends
# Read in project info
#########################################
# Expecting a .csv with project_columns #
#########################################
projects = project_formatter("/shared-files/csv/new_project_info.csv")
# Co-occurrences
# Find co-occurrences
co_occurrences_dict = {}
for word in trend_keywords:
co_occurrences_dict[word] = pd.DataFrame(trend_finder.find_co_occurrences(word), columns = ["Word", "Count"])
pf.output_table_data(word, co_occurrences_dict[word], "co_occurrences", DATE, bucket, client, index=True)
# Plot XoX
# Overall trend history
for word in trend_keywords:
plot_xox_out = trend_finder.plot_xox(word, plot = False)
pf.output_plot_data(word, plot_xox_out, 'plot_xox', DATE, bucket, client)
# Demo
build_demo()
# Overview/Geo
for word in trend_keywords:
# Get subset of projects for word
subset_df = subset_df_by_id(projects, keyword_ids_dict[word])
# Overview
build_overview(word, subset_df)
# Geo
build_geo(word, subset_df)
print("TrendFinder done!")