-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
90 lines (74 loc) · 3.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import tensorflow as tf
import tensorflow_probability as tfp
import keras
from keras.utils.np_utils import to_categorical
from keras.datasets import mnist
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import IsolationForest
from keras import models
from keras import layers
from keras import callbacks
import openpyxl
tfk = tf.keras
tf.keras.backend.set_floatx("float64")
tfd = tfp.distributions
os.chdir('C:\\Users\\loren\\OneDrive\\Desktop\\Lezioni uni\\Bayesian Analysis\\Progetto')
scaler = StandardScaler()
detector = IsolationForest(n_estimators=1000, contamination="auto", random_state=0)
neg_log_likelihood = lambda x, rv_x: -rv_x.log_prob(x)
data = pd.read_excel("AirQualityUCI.xlsx")
data = data[data["Date"] <= "2004-09-10"]
columns = ["PT08.S1(CO)", "PT08.S3(NOx)", "PT08.S4(NO2)", "PT08.S5(O3)", "T", "AH", "CO(GT)", "C6H6(GT)", "NOx(GT)", "NO2(GT)"]
data = data[columns].dropna(axis=0)
# Scale data to zero mean and unit variance.
X_t = scaler.fit_transform(data)
# Remove outliers.
is_inlier = detector.fit_predict(X_t)
X_t = X_t[(is_inlier > 0),:]
# Restore frame.
dataset = pd.DataFrame(X_t, columns=columns)
# Select labels for inputs and outputs.
inputs = ["PT08.S1(CO)", "PT08.S3(NOx)", "PT08.S4(NO2)", "PT08.S5(O3)", "T", "AH"]
outputs = ["CO(GT)", "C6H6(GT)", "NOx(GT)", "NO2(GT)"]
# TRAINING
n_epochs = 50
n_samples = dataset.shape[0]
n_batches = 10
batch_size = np.floor(n_samples/n_batches)
buffer_size = n_samples
n_train = int(0.7*dataset.shape[0])
data = tf.data.Dataset.from_tensor_slices((dataset[inputs].values, dataset[outputs].values))
data = data.shuffle(n_samples, reshuffle_each_iteration=True)
data_train = data.take(n_train).batch(batch_size).repeat(n_epochs)
data_test = data.skip(n_train).batch(1)
prior = tfd.Independent(tfd.Normal(loc=tf.zeros(len(outputs), dtype=tf.float64), scale=1.0), reinterpreted_batch_ndims=1)
model = tfk.Sequential([
tfk.layers.InputLayer(input_shape=(len(inputs),), name="input"),
tfk.layers.Dense(10, activation="relu", name="dense_1"),
tfk.layers.Dense(tfp.layers.MultivariateNormalTriL.params_size(
len(outputs)), activation=None, name="distribution_weights"),
tfp.layers.MultivariateNormalTriL(len(outputs), activity_regularizer=tfp.layers.KLDivergenceRegularizer(prior, weight=1/n_batches), name="output")
], name="model")
model.compile(optimizer="adam", loss=neg_log_likelihood)
model.fit(data_train, epochs=n_epochs, validation_data=data_test, verbose=False)
model.summary()
tfp.layers.DenseFlipout(10, activation="relu", name="dense_1")
# PREDICT
samples = 500
iterations = 10
test_iterator = tf.compat.v1.data.make_one_shot_iterator(data_test)
X_true, Y_true, Y_pred = np.empty(shape=(samples, len(inputs))), np.empty(shape=(samples, len(outputs))), np.empty(
shape=(samples, len(outputs), iterations))
for i in range(samples):
features, labels = test_iterator.get_next()
X_true[i, :] = features
Y_true[i, :] = labels.numpy()
for k in range(iterations):
Y_pred[i, :, k] = model.predict(features)
# Calculate mean and standard deviation.
Y_pred_m = np.mean(Y_pred, axis=-1)
Y_pred_s = np.std(Y_pred, axis=-1)