-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKMeans.hpp
150 lines (129 loc) · 4.06 KB
/
KMeans.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#pragma once
#include <vector>
#include <cmath>
#include <random>
#include <limits>
// euclidean distance between two points
template <typename T>
double euclideanDistance(const std::array<T, 3>& p1, const std::array<T, 3>& p2) {
return std::sqrt(std::pow(p1[0] - p2[0], 2) + std::pow(p1[1] - p2[1], 2) + std::pow(p1[2] - p2[2], 2));
}
/*
the K-means algorithm
:params: data_points, num_of_clusters, max_iterations
:return: centeroids
*/
template <typename T>
std::vector<std::array<T, 3>> kMeans(const std::vector<std::array<T, 3>>& points, int k, int maxIterations) {
// 1. initialize centers
std::array<T, 3> dataMin = points[0];
std::array<T, 3> dataMax = points[0];
for (const auto& point : points) {
for (int i = 0; i < 3; i++) {
if (point[i] < dataMin[i]) {
dataMin[i] = point[i];
}
else if (point[i] > dataMax[i]) {
dataMax[i] = point[i];
}
}
}
std::vector<std::array<T, 3>> centers(k);
std::mt19937 randomEngine(time(0));
std::uniform_real_distribution<double> uniformDistribution(0.0, 1.0);
for (int i = 0; i < k; ++i) {
centers[i][0] = uniformDistribution(randomEngine);
centers[i][1] = uniformDistribution(randomEngine);
centers[i][2] = uniformDistribution(randomEngine);
}
// rescale centers to data range
for (auto& center : centers) {
center[0] = dataMin[0] + (dataMax[0] - dataMin[0]) * center[0];
center[1] = dataMin[1] + (dataMax[1] - dataMin[1]) * center[1];
center[2] = dataMin[2] + (dataMax[2] - dataMin[2]) * center[2];
}
// 2. iterate until convergence
for (int iter = 0; iter < maxIterations; ++iter) {
// distribute points to clusters
std::vector<std::vector<std::array<T, 3>>> clusters(k);
for (const auto& point : points) {
double minDistance = std::numeric_limits<double>::max();
int closestCenterIdx = -1;
for (int i = 0; i < k; ++i) {
double distance = euclideanDistance(point, centers[i]);
if (distance < minDistance) {
minDistance = distance;
closestCenterIdx = i;
}
}
clusters[closestCenterIdx].push_back(point);
}
// update centers
for (int i = 0; i < k; ++i) {
if(clusters[i].empty()) continue;
// calculate new center (average
double sumX = 0, sumY = 0, sumZ = 0;
for (const auto& point : clusters[i]) {
sumX += point[0];
sumY += point[1];
sumZ += point[2];
}
centers[i][0] = sumX / clusters[i].size();
centers[i][1] = sumY / clusters[i].size();
centers[i][2] = sumZ / clusters[i].size();
}
}
return centers;
}
template <typename T>
std::vector<T> kMeansUnivariate(const std::vector<T>& X, int k, int maxIterations) {
// 1. initialize centers
T dataMin = X[0];
T dataMax = X[0];
for (const auto& x : X) {
if (x < dataMin) {
dataMin = x;
}
else if (x > dataMax) {
dataMax = x;
}
}
std::vector<T> centers(k);
std::mt19937 randomEngine(time(0));
std::uniform_real_distribution<T> uniformDistribution(0.0, 1.0);
for (int i = 0; i < k; ++i) {
centers[i] = uniformDistribution(randomEngine);
}
// rescale centers to data range
for (T& center : centers) {
center = dataMin + (dataMax - dataMin) * center;
}
// 2. iterate until convergence
for (int iter = 0; iter < maxIterations; ++iter) {
// distribute points to clusters
std::vector<std::vector<T>> clusters(k);
for (const T& x : X) {
T minDistance = std::numeric_limits<T>::max();
int closestCenterIdx = -1;
for (int i = 0; i < k; ++i) {
T distance = std::sqrt(std::pow(x - centers[i], 2));
if (distance < minDistance) {
minDistance = distance;
closestCenterIdx = i;
}
}
clusters[closestCenterIdx].push_back(x);
}
// update centers
for (int i = 0; i < k; ++i) {
if (clusters[i].empty()) continue;
// calculate new center (average
double sum = 0;
for (const T& x : clusters[i]) {
sum += x;
}
centers[i] = sum / clusters[i].size();
}
}
return centers;
}