-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel.py
443 lines (381 loc) · 19.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
from collections import OrderedDict
import tensorflow as tf
import tensorflow.contrib as tfc
import logging
import numpy as np
import utils
from utils import lookup_activation, apply_mixed_activations
logger = logging.getLogger(__name__)
def mlp(x, output_units, depth, units, activation, use_layernorm, output_activation=None, output_bias=True, **kwargs):
if output_units:
depth -= 1
for i in range(depth):
if isinstance(activation, list):
x = tf.layers.dense(x, units=units)
x = apply_mixed_activations(x, activation)
else:
x = tf.layers.dense(x, units=units, activation=activation)
if use_layernorm:
use_center = output_bias or i < depth - 1
x = tfc.layers.layer_norm(x, center=use_center, begin_norm_axis=-1)
hidden = x
if output_units:
out = tf.layers.dense(x, units=output_units, activation=output_activation, use_bias=output_bias)
else:
out = hidden
return utils.DotDict(locals())
def recurrent(x, output_units, depth, units, activation, use_layernorm, initial_state=None, output_activation=None, seq_len=None):
lstm_cell = tfc.rnn.LayerNormBasicLSTMCell(units, activation=lookup_activation(activation),
layer_norm=use_layernorm)
inputs = np.repeat(tf.unstack(x, axis=1), depth).tolist()
outputs, state = tf.nn.static_rnn(lstm_cell, inputs, dtype=tf.float32, initial_state=initial_state,
sequence_length=seq_len)
hidden = tf.stack(outputs[depth - 1::depth], axis=1)
out = tf.layers.dense(hidden, output_units, activation=output_activation)
return utils.DotDict(locals())
class Agent:
"""
A tensorflow model for the agent with critic and policy (+ target networks)
"""
def __init__(self, dconfig, env):
self.obs_dim = env.observation_space.shape[0]
self.act_dim = env.action_space.shape[0]
self.act_limit = env.action_space.high[0]
if dconfig.critic_is_recurrent:
critic_args = [dconfig.critic_depth, dconfig.critic_units, dconfig.critic_rnn_activation,
dconfig.critic_layernorm]
self.critic_func = lambda *args, **kwargs: recurrent(*args, *critic_args, **kwargs)
else:
critic_args = [dconfig.critic_depth, dconfig.critic_units, dconfig.critic_activation,
dconfig.critic_layernorm]
self.critic_func = lambda *args, **kwargs: mlp(*args, *critic_args, **kwargs)
if dconfig.policy_is_recurrent:
policy_args = [dconfig.policy_depth, dconfig.policy_units, dconfig.policy_rnn_activation,
dconfig.policy_layernorm]
self.policy_func = lambda *args, **kwargs: recurrent(*args, *policy_args, **kwargs)
else:
policy_args = [dconfig.policy_depth, dconfig.policy_units, dconfig.policy_activation,
dconfig.policy_layernorm]
self.policy_func = lambda *args, **kwargs: mlp(*args, *policy_args, **kwargs)
with tf.variable_scope(None, 'agent'):
self.main = self._create('main')
self.target = self._create('target')
def _create(self, scope):
with tf.variable_scope(scope):
replace_manager = utils.ReplaceVariableManager()
return utils.DotDict({
'critic': tf.make_template('critic', self._critic, True),
'critic2': tf.make_template('critic2', self._critic, True),
'policy': tf.make_template('policy', self._policy, True, custom_getter_=replace_manager)
})
def _critic(self, x, a, **kwargs):
kwargs = {k: v for k, v in kwargs.items() if v is not None}
value = tf.squeeze(self.critic_func(tf.concat([x, a], axis=-1), 1, **kwargs).out, axis=-1)
return value
def _policy(self, x, initial_state=None, **kwargs):
kwargs = {k: v for k, v in kwargs.items() if v is not None}
if initial_state is not None:
initial_state = tf.unstack(initial_state)
kwargs['initial_state'] = initial_state
policy = self.policy_func(x, self.act_dim, output_activation=tf.tanh, **kwargs)
pi = self.act_limit * policy.out
result = {
'action': pi,
'hidden': policy.hidden,
'value': self.main.critic(x, pi),
'target_value': lambda: self.target.critic(x, pi),
}
if hasattr(policy, 'state'):
result['state'] = policy.state
return utils.DotDict(result)
class Objective:
"""
A neural objective function
"""
def __init__(self, dconfig):
self.dconfig = dconfig
self.objective = tf.make_template('objective', self._create_objective, True)
obj_args = [dconfig.obj_func_depth, dconfig.obj_func_units, dconfig.obj_func_activation,
dconfig.obj_func_layernorm]
self.obj_func = lambda *args, **kwargs: mlp(*args, *obj_args, **kwargs)
if dconfig.obj_func_input_transform_depth:
input_transform_kwargs = {'depth': dconfig.obj_func_input_transform_depth,
'output_units': 0,
'units': dconfig.obj_func_input_transform_units,
'activation': dconfig.obj_func_activation,
'use_layernorm': dconfig.obj_func_layernorm}
self.input_transform = lambda *args, **kwargs: mlp(*args, **utils.merge_dicts(input_transform_kwargs, kwargs)).out
else:
self.input_transform = None
def _objective_reward_value_transform(self, values, rewards, terminals, create_summary):
"""
First transformation on objective inputs
"""
values = values[..., tf.newaxis]
normalized_values = utils.z_normalize_online(values, axes=[0, 1])
normalized_rewards = utils.z_normalize_online(rewards, axes=[0, 1])
time = tf.tile(tf.range(0, rewards.shape[1].value, dtype=tf.float32)[tf.newaxis, :, tf.newaxis],
[tf.shape(values)[0], 1, 1])
inp = tf.concat([normalized_rewards,
time / rewards.shape[1].value,
normalized_values[:, 1:] * (1.0 - terminals),
normalized_values[:, :-1]], axis=-1)
if create_summary:
tf.summary.histogram('obj_input', inp)
return self.input_transform(inp, use_layernorm=self.dconfig.obj_func_input_transform_layernorm,
output_units=self.dconfig.obj_func_input_transform_out_units)
def _objective_error_transform(self, inp):
"""
Takes a vector and transforms it to a bounded scalar error
"""
use_error_scale = self.dconfig.obj_func_error_scale is not None
use_error_func = self.dconfig.obj_func_error_func is not None
error = tf.squeeze(self.obj_func(inp, 1, output_bias=use_error_func).out, axis=-1)
if use_error_scale:
error = error * self.dconfig.obj_func_error_scale
if use_error_func:
func = self.dconfig.obj_func_error_func
error = getattr(tf.nn, func, getattr(tf, func))(error)
if use_error_scale:
error = error / self.dconfig.obj_func_error_scale
return error
def _create_objective(self, x, a, trans, seq_len, seq_mask, agent, policy, create_summary=False):
ftype = self.dconfig.obj_func_type
if ftype == 'learned-reinforce':
# Only support entire trajectories and non recurrent critics at the moment
assert self.dconfig.recurrent_time_steps > 1
assert not self.dconfig.critic_is_recurrent
_, rb_action, x2, rewards, terminals = trans
# TODO can we already compute this in the first pass?
final_input = x2[:, -1]
if self.dconfig.policy_is_recurrent:
# TODO actually we can not just use zero here
# because the last observation may not be at the end of an episode
# (recurrent version is currently not used)
final_value = tf.zeros(tf.shape(policy.value)[0])
else:
final_value = agent.main.policy(final_input).value
values = tf.stop_gradient(tf.concat([policy.value, final_value[:, tf.newaxis]], axis=-1))
obj_action_input = tf.concat([rb_action[..., tf.newaxis], policy.action[..., tf.newaxis]], axis=-1)
if create_summary:
tf.summary.histogram('obj_action_input', obj_action_input)
transformed_actions = tf.reduce_mean(self.input_transform(obj_action_input), axis=-2)
transformed_other_inputs = self._objective_reward_value_transform(values, rewards, terminals,
create_summary)
rnn_input = tf.unstack(tf.concat([transformed_actions, transformed_other_inputs], axis=-1), axis=1)[::-1]
lstm_cell = tf.nn.rnn_cell.LSTMCell(num_units=self.dconfig.obj_func_lstm_units)
outputs, _ = tf.nn.static_rnn(lstm_cell, rnn_input, dtype=tf.float32, sequence_length=seq_len)
outputs = tf.stack(outputs[::-1], axis=1)
return self._objective_error_transform(outputs)
elif ftype == 'reinforce':
# A baseline objective function: off-policy REINFORCE
assert self.dconfig.recurrent_time_steps > 1
assert not self.dconfig.policy_is_recurrent
assert not self.dconfig.critic_is_recurrent
_, rb_action, x2, rewards, terminals = trans
# TODO can we already compute this in the first pass?
final_input = x2[:, -1]
final_value = agent.main.policy(final_input).value
values = tf.concat([policy.value, final_value[:, tf.newaxis]], axis=-1)
gae = utils.calculate_gae(tf.squeeze(rewards, axis=-1), tf.squeeze(terminals, axis=-1),
values, self.dconfig.discount_factor, self.dconfig.gae_factor)
error = tf.reduce_mean((rb_action - policy.action) ** 2, axis=-1)
return error * gae * tf.get_variable('factor', [], tf.float32, initializer=tf.ones_initializer())
else:
raise ValueError(f'Invalid objective function type:{ftype}')
def future_policy_value(self, x, a, trans, seq_len, seq_mask, agent, opt, create_summary=False):
"""
Computes the value of a policy according to the critic when updated using the objective function
:param x: observations
:param a: actions
:param trans: entire tuple of transition (s_t, a_t, r_t, d_t, s_{t+1})
:param seq_len: Length of trajectories
:param seq_mask: Binary mask of trajectories
:param agent: agent to compute value for
:param opt: optimizer to use for the policy update
:param create_summary: whether to create summary ops
:return: tensor of batched future policy value
"""
with tf.variable_scope('future_policy_value'):
policy = agent.main.policy
policy_vars = policy.trainable_variables
# The replace manager can replace the policy variables with updated variables
replace_manager = policy.variable_scope.custom_getter
use_adam = self.dconfig.obj_func_second_order_adam
step_size = self.dconfig.obj_func_second_order_stepsize
step_count = self.dconfig.obj_func_second_order_steps + 1
batch_size = self.dconfig.buffer_sample_size
# Split tensors according to number of inner gradient descent steps
x_s = tf.split(x, step_count, axis=0)
a_s = tf.split(a, step_count, axis=0)
if seq_len is not None:
seq_len_s = tf.split(seq_len, step_count, axis=0)
seq_mask_s = tf.split(seq_mask, step_count, axis=0)
else:
seq_len_s = utils.ConstArray()
seq_mask_s = utils.ConstArray(seq_mask)
trans_s = list(zip(*(tf.split(e, step_count, axis=0) for e in trans)))
objective_val = None
policy_grads = None
opt_args_dict = {}
current_vars = policy_vars
var_names = [var.op.name for var in policy_vars]
for i in range(step_count - 1):
# Run policy
policy_result = policy(x_s[i], seq_len=seq_len_s[i])
# Run objective
objective_val = self.objective(x_s[i], a_s[i], trans_s[i], seq_len_s[i], seq_mask_s[i], agent,
policy_result, create_summary)
# Compute policy gradients
policy_grads = tf.gradients(objective_val * seq_mask_s[i], current_vars)
if use_adam:
def grad_transform(grad, var, var_name):
if var_name in opt_args_dict:
opt_args = opt_args_dict[var_name]
else:
opt_args = []
new_grad, *opt_args = opt.adapt_gradients(grad, var, *opt_args, lr=step_size)
opt_args_dict[var_name] = opt_args
return new_grad
else:
def grad_transform(grad, *args):
return step_size * grad
# Use adam or vanilla SGD for inner gradient step
transformed_grads = [grad_transform(grad, var, var_name)
for grad, var, var_name in zip(policy_grads, current_vars, var_names)]
one_step_updated_policy_vars = [var - grad for var, grad in zip(current_vars, transformed_grads)]
one_step_updated_policy_vars_dict = OrderedDict(zip(var_names, one_step_updated_policy_vars))
# # Updates replace manager to run policy with updated variables in the next loop iteration
replace_manager.replace_dict = one_step_updated_policy_vars_dict
current_vars = one_step_updated_policy_vars
# Run policy with final parameters
future_policy = policy(x, seq_len=seq_len)
replace_manager.replace_dict = None
# Estimate the final policy value
future_policy_value = agent.main.critic(x, future_policy.action) * seq_mask
if create_summary:
orig_policy = policy(x_s[-1], seq_len=seq_len_s[-1])
partial_future_policy_value = future_policy_value[-batch_size:]
tf.summary.histogram('objective_value', objective_val)
tf.summary.histogram('policy_grads', utils.flat(policy_grads))
tf.summary.histogram('policy_value', orig_policy.value)
tf.summary.histogram('future_policy_value', partial_future_policy_value)
tf.summary.histogram('policy_value_gain', partial_future_policy_value - orig_policy.value)
sample_axis = [0, 1] if self.dconfig.recurrent_time_steps > 1 else 0
cor = utils.correlation(-orig_policy.value, objective_val, sample_axis)
tf.summary.scalar('objective_critic_correlation', tf.squeeze(cor))
grad, = tf.gradients(objective_val, policy_result.value)
if grad is not None:
tf.summary.histogram('objective_critic_grads', grad)
return future_policy_value
@property
def variables(self):
return self.objective.trainable_variables
def set_variables(self, sess, values):
for var, val in zip(self.variables, values):
var: tf.Variable
var.load(val, sess)
class ReplayBuffer:
"""
A simple FIFO experience replay buffer for TD3 agents.
"""
def __init__(self, obs_dim, act_dim, size, discount_factor):
self.obs_dim = obs_dim
self.act_dim = act_dim
self.discount_factor = discount_factor
self.obs1_buf = np.zeros([size, obs_dim], dtype=np.float32)
self.obs2_buf = np.zeros([size, obs_dim], dtype=np.float32)
self.acts_buf = np.zeros([size, act_dim], dtype=np.float32)
self.rews_buf = np.zeros(size, dtype=np.float32)
self.done_buf = np.zeros(size, dtype=np.float32)
self.episode_markers = [0] # Can't use dequeue here due random access sampling
self.ptr, self.size, self.max_size = 0, 0, size
def restore(self, other: 'ReplayBuffer'):
self.obs1_buf = other.obs1_buf
self.obs2_buf = other.obs2_buf
self.acts_buf = other.acts_buf
self.rews_buf = other.rews_buf
self.done_buf = other.done_buf
self.episode_markers = other.episode_markers
self.ptr = other.ptr
self.size = other.size
self.max_size = other.max_size
def store(self, obs, act, rew, next_obs, done):
if self.done_buf[self.ptr]:
del self.episode_markers[0]
self.obs1_buf[self.ptr] = obs
self.obs2_buf[self.ptr] = next_obs
self.acts_buf[self.ptr] = act
self.rews_buf[self.ptr] = rew
self.done_buf[self.ptr] = done
self.ptr = (self.ptr+1) % self.max_size
self.size = min(self.size+1, self.max_size)
if done:
self.episode_markers.append(self.ptr)
def sample_batch(self, batch_size):
idxs = np.random.randint(0, self.size, size=batch_size)
return dict(obs1=self.obs1_buf[idxs],
obs2=self.obs2_buf[idxs],
acts=self.acts_buf[idxs],
rews=self.rews_buf[idxs],
done=self.done_buf[idxs])
def sample_time_batch(self, time, batch_size):
eps_idxs = np.random.randint(0, len(self.episode_markers) - 1, size=batch_size)
eps = np.array([self.episode_markers[i] for i in eps_idxs])
eps_lens = np.array([self.episode_markers[i + 1] - self.episode_markers[i] for i in eps_idxs])
offsets = np.array([np.random.randint(0, max(eps_len - time + 1, 1)) for eps_len in eps_lens])
lens = np.minimum(eps_lens, time)
idxs = eps + offsets
def create(buf, use_ones=False):
shape = (batch_size, time) + buf.shape[1:]
out = np.ones(shape) if use_ones else np.zeros(shape)
for i, (idx, len_) in enumerate(zip(idxs, lens)):
out[i, :len_] = buf[idx:idx + len_]
return out
return dict(obs1=create(self.obs1_buf),
obs2=create(self.obs2_buf),
acts=create(self.acts_buf),
rews=create(self.rews_buf),
done=create(self.done_buf),
lens=lens)
def create_dataset(self, batch_size, time=None):
"""
Create a tf dataset from this replay buffer
:param batch_size: the mini batch size to use
:param time: whether to sample trajectories of length `time` or single transitions
:return: a tf dataset
"""
output_types = dict(
obs1=tf.float32,
obs2=tf.float32,
acts=tf.float32,
rews=tf.float32,
done=tf.float32,
)
if time is None:
def _generator():
while True:
yield self.sample_batch(batch_size)
output_shapes = dict(
obs1=[None, self.obs_dim],
obs2=[None, self.obs_dim],
acts=[None, self.act_dim],
rews=[None],
done=[None],
)
else:
def _generator():
while True:
yield self.sample_time_batch(time, batch_size)
output_types['lens'] = tf.int32
output_shapes = dict(
obs1=[None, time, self.obs_dim],
obs2=[None, time, self.obs_dim],
acts=[None, time, self.act_dim],
rews=[None, time],
done=[None, time],
lens=[None]
)
dataset = tf.data.Dataset.from_generator(_generator, output_types, output_shapes)
dataset = dataset.prefetch(3)
return dataset