-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtsp_py.py
executable file
·149 lines (115 loc) · 3.68 KB
/
tsp_py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/python
# Copyright 2013, Gurobi Optimization, Inc.
# Solve a traveling salesman problem on a randomly generated set of
# points using lazy constraints. The base MIP model only includes
# 'degree-2' constraints, requiring each node to have exactly
# two incident edges. Solutions to this model may contain subtours -
# tours that don't visit every city. The lazy constraint callback
# adds new constraints to cut them off.
import sys
import math
import random
from gurobipy import *
# Callback - use lazy constraints to eliminate sub-tours
def subtourelim(model, where):
if where == GRB.callback.MIPSOL:
selected = []
# make a list of edges selected in the solution
for i in range(n):
sol = model.cbGetSolution([model._vars[i,j] for j in range(n)])
selected += [(i,j) for j in range(n) if sol[j] > 0.5]
# find the shortest cycle in the selected edge list
tour = subtour(selected)
if len(tour) < n:
# add a subtour elimination constraint
expr = 0
for i in range(len(tour)):
for j in range(i+1, len(tour)):
expr += model._vars[tour[i], tour[j]]
model.cbLazy(expr <= len(tour)-1)
# Euclidean distance between two points
def distance(points, i, j):
dx = points[i][0] - points[j][0]
dy = points[i][1] - points[j][1]
return math.sqrt(dx*dx + dy*dy)
# Given a list of edges, finds the shortest subtour
def subtour(edges):
visited = [False]*n
cycles = []
lengths = []
selected = [[] for i in range(n)]
for x,y in edges:
selected[x].append(y)
while True:
current = visited.index(False)
thiscycle = [current]
while True:
visited[current] = True
neighbors = [x for x in selected[current] if not visited[x]]
if len(neighbors) == 0:
break
current = neighbors[0]
thiscycle.append(current)
cycles.append(thiscycle)
lengths.append(len(thiscycle))
if sum(lengths) == n:
break
return cycles[lengths.index(min(lengths))]
# Parse argument
if len(sys.argv) < 2:
print('Usage: tsp.py npoints')
exit(1)
n = int(sys.argv[1])
# Create n random points
random.seed(1)
points = []
for i in range(n):
points.append((random.randint(0,100),random.randint(0,100)))
# points = []
# f = open('pr76.tsp', 'r')
#
# cities = []
# begin = False
# for line in f:
# line = line.rstrip('\n')
# parsedline = line.split()
# # print(parsedline)
# if line == "EOF":
# begin = False
# if begin:
# points.append((int(parsedline[1]),int(parsedline[2])))
# if line == "NODE_COORD_SECTION":
# begin = True
# if parsedline[0] == "DIMENSION":
# n = int(parsedline[2])
m = Model()
# Create variables
vars = {}
for i in range(n):
for j in range(i+1):
vars[i,j] = m.addVar(obj=distance(points, i, j), vtype=GRB.BINARY,
name='e'+str(i)+'_'+str(j))
vars[j,i] = vars[i,j]
m.update()
uVars = {}
for i in range(n):
uVars[i] = m.addVar(vtype=GRB.INTEGER,name='u'+str(i))
m.update
# Add degree-2 constraint, and forbid loops
for i in range(n):
m.addConstr(quicksum(vars[i,j] for j in range(n)) == 2)
vars[i,i].ub = 0
m.update()
m.write("tsp.lp")
# Optimize model
m._vars = vars
m._uVars = uVars
m.params.LazyConstraints = 1
m.optimize(subtourelim)
solution = m.getAttr('X', vars)
selected = [(i,j) for i in range(n) for j in range(n) if solution[i,j] > 0.5]
assert len(subtour(selected)) == n
print('')
print('Optimal tour: %s' % str(subtour(selected)))
print('Optimal cost: %g' % m.objVal)
print('')