-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
42 lines (30 loc) · 1.07 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# pylint:disable=no-member
import numpy as np
import cv2 as cv
haar_cascade = cv.CascadeClassifier("haar_face.xml")
people = ["Ben Afflek", "Elton John", "Jerry Seinfield", "Madonna", "Mindy Kaling"]
# features = np.load('features.npy', allow_pickle=True)
# labels = np.load('labels.npy')
face_recognizer = cv.face.LBPHFaceRecognizer_create()
face_recognizer.read("face_trained.yml")
img = cv.imread(r"Faces\val\elton_john/1.jpg")
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
cv.imshow("Person", gray)
# Detect the face in the image
faces_rect = haar_cascade.detectMultiScale(gray, 1.1, 4)
for x, y, w, h in faces_rect:
faces_roi = gray[y : y + h, x : x + w]
label, confidence = face_recognizer.predict(faces_roi)
print(f"Label = {people[label]} with a confidence of {confidence}")
cv.putText(
img,
str(people[label]),
(20, 20),
cv.FONT_HERSHEY_COMPLEX,
1.0,
(0, 255, 0),
thickness=2,
)
cv.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), thickness=2)
cv.imshow("Detected Face", img)
cv.waitKey(0)