-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaces_train.py
53 lines (36 loc) · 1.3 KB
/
faces_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# pylint:disable=no-member
import os
import cv2 as cv
import numpy as np
people = ["Ben Afflek", "Elton John", "Jerry Seinfield", "Madonna", "Mindy Kaling"]
DIR = r"Faces\train"
haar_cascade = cv.CascadeClassifier("haar_face.xml")
features = []
labels = []
def create_train():
for person in people:
path = os.path.join(DIR, person)
label = people.index(person)
for img in os.listdir(path):
img_path = os.path.join(path, img)
img_array = cv.imread(img_path)
if img_array is None:
continue
gray = cv.cvtColor(img_array, cv.COLOR_BGR2GRAY)
faces_rect = haar_cascade.detectMultiScale(
gray, scaleFactor=1.1, minNeighbors=4
)
for x, y, w, h in faces_rect:
faces_roi = gray[y : y + h, x : x + w]
features.append(faces_roi)
labels.append(label)
create_train()
print("Training done ---------------")
features = np.array(features, dtype="object")
labels = np.array(labels)
face_recognizer = cv.face.LBPHFaceRecognizer_create()
# Train the Recognizer on the features list and the labels list
face_recognizer.train(features, labels)
face_recognizer.save("face_trained.yml")
np.save("features.npy", features)
np.save("labels.npy", labels)