-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbisqmean.m
executable file
·91 lines (76 loc) · 2.21 KB
/
bisqmean.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
function [ymn,varyh,df,w,ybar,se]=bisqmean(y)
%
% Biweight mean for a vector of numbers.
% D Meko 2-18-95
%
% Source: Mosteller and Tukey (1977, p. 205, p 351-352)
% Cook and Kairiukstis (1990, p. 125-126)
%
%
%**************** INPUT *************************
%
% y (? x 1)r vector of data -- say, indices for ? cores in a year
%
%
%******************** OUTPUT ************************
%
% ymn (1 x 1)r biweight mean
% s (1 x 1)r asymptotic standard dev of biweight mean - p. 208,
% third eqn from top of page
% w (? x 1)r final weights on values in y
% ybar (1 x 1)r arithmetic mean corresponding to ymn
% se (1 x 1)r standard error of ybar
%
%******************** NOTES *********************
%
% ybar and v1 just included for debugging purposes to double check
% on closeness of ybar to ymn, v1 to v
%
%*******************************************************************
sens = 0.001; % hard coded theshold of sensitivity for stopping iterat
nits = 10; % max number of allowed iterations
[n,ny]=size(y);
if ny > 1;
error('y should be a vector')
end
if n<6, error('Should use median for n<6'), end
ww = 1/n; % weight for even average
ybar = mean(y); % arith mean
se= sqrt(var(y)/n); % standard error of mean
nz=0;
ymn = ybar; % initial biweight mean as arith mean
for i = 1, nits; % iterate max of nits times
ymnold = ymn; % store old value of mean
e = y-ymn; % deviations from mean
S = median(abs(e)); % median abs deviation
u = e / (6*S); % scaled deviations
w = (1 - u.^2).^2; % compute weights
L1 = u>=1; % flag huge errors
L1s = sum(L1);
if L1s>0
nz=0;
nz= nz(ones(L1s,1),:);
w(L1)=nz; % set weights on those obs to zero
end
w = w / sum(w); % adjust weights to sum to 1.0
ymn = sum(w .* y); % compute biweight mean
% Variance of estimate of biweight mean
ui= e / (9*S);
L2 = ui>1;
ui(L2)=[];
z =y(~L2);
nz = length(z);
nom1 = (z - ymn) .^2;
nom2 = (1-ui .^2) .^4;
nom = sum(nom1 .* nom2);
den1 = sum((1-ui .^2) .* (1-5*ui .^2));
den2 = -1 + sum ((1-ui .^2) .* (1-5*ui .^2));
varyh = nom / (den1*den2); % variance of biweight mean
% last eqn, p. 208
df = 0.7 * (nz -1); % degrees of freedom
% if little change in mean, exit loop
if abs (ymn - ymnold) < sens
break
end
end