forked from Jacob-Barhak/SharingDiseaseModels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExample2.py
44 lines (39 loc) · 862 Bytes
/
Example2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#Example 2: Three State Markov Model
#
#
#There are 3 disease states:
#Healthy, Sick, Dead
#
#The yearly transition probabilities are :
#Healthy to Dead 0.01
#Healthy to Sick 0.2
#Sick to Healthy 0.1
#Sick to Dead 0.3
#
#This builds the following transition Matrix
#[[ 1-0.2-0.01 , 0.2 , 0.01],
# [0.1, 1-0.1-0.3, 0.3],
#[ 0 , 0 , 1]]
#
#Initial conditions:
#Healthy = 100, Sick = 0, Dead = 0
#
#
#
#Output requested: Amount of people in each state for years 1-10.
import tellurium as te
r = te.loada ('''
J00: H -> S; H*0.2
J02: H -> D; H*0.01
J10: S -> H; S*0.1
J12: S -> D; S*0.3
H = 100
S = 0
D = 0''')
# This will create the SBML XML file
te.saveToFile ('Example2.xml', r.getSBML())
r.setIntegrator('gillespie')
r.integrator.variable_step_size = True
r.getIntegrator().setValue('seed', 0)
result = r.simulate(0,10)
r.plot (result)