forked from lucienevans/bhtsne
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsne.h
63 lines (54 loc) · 3.24 KB
/
tsne.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
*
* Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Delft University of Technology.
* 4. Neither the name of the Delft University of Technology nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
*/
#ifndef TSNE_H
#define TSNE_H
static inline double sign(double x) { return (x == .0 ? .0 : (x < .0 ? -1.0 : 1.0)); }
class TSNE
{
public:
void run(double* X, int N, int D, double* Y, int no_dims, double perplexity, double theta, int rand_seed,
bool skip_random_init, int max_iter=1000, int stop_lying_iter=250, int mom_switch_iter=250);
bool load_data(double** data, int* n, int* d, int* no_dims, double* theta, double* perplexity, int* rand_seed);
void save_data(double* data, int* landmarks, double* costs, int n, int d);
void symmetrizeMatrix(unsigned int** row_P, unsigned int** col_P, double** val_P, int N); // should be static!
private:
void computeGradient(double* P, unsigned int* inp_row_P, unsigned int* inp_col_P, double* inp_val_P, double* Y, int N, int D, double* dC, double theta);
void computeExactGradient(double* P, double* Y, int N, int D, double* dC);
double evaluateError(double* P, double* Y, int N, int D);
double evaluateError(unsigned int* row_P, unsigned int* col_P, double* val_P, double* Y, int N, int D, double theta);
void zeroMean(double* X, int N, int D);
void computeGaussianPerplexity(double* X, int N, int D, double* P, double perplexity);
void computeGaussianPerplexity(double* X, int N, int D, unsigned int** _row_P, unsigned int** _col_P, double** _val_P, double perplexity, int K);
void computeSquaredEuclideanDistance(double* X, int N, int D, double* DD);
double randn();
};
#endif